On Inference of XML Schema with the Knowledge of an Obsolete One

Irena Mlýnková

Department of Software Engineering Faculty of Mathematics and Physics Charles University Prague, Czech Republic

mlynkova@ksi.mff.cuni.cz http://www.ksi.mff.cuni.cz/~mlynkova/

1. Introduction

- 2. Existing Approaches
- 3. Proposed Improvement
- 4. Conclusion

Introduction

- XML = a standard for data representation and manipulation
- XML documents + XML schema
 - Allowed data structure
 - W3C recommendations: DTD, XML Schema (XSD)
 - ISO standards: RELAX NG, Schematron, ...
- □ Why schema?
 - Known structure, valid data, limited complexity ⇒ Optimization
 - Storing, querying, updating, compressing, ...

Real-World XML Schemas

- □ Statistical analyses of real-word XML data:
 - 52% of randomly crawled / 7.4% of semi-automatically collected documents: no schema
 - 0.09% of randomly crawled / 38% of semiautomatically collected documents with schema: use XSD
 - 85% of randomly crawled XSDs: equivalent to DTDs

Problem:

- Users do not use schemas at all
- Schema = a kind of documentation
 - Documents are not valid, schemas are not correct
- XML Schema language is not used
 - Too complex, too difficult

Inference of XML Schemas

Solution:

- Automatic inference of XML schema S_D for a given set of documents D
- \Rightarrow Multiple solutions
 - □ Too general = accepts too many documents
 - □ Too restrictive = accepts only D

Advantages:

- $S_D = a$ good initial draft for user-specified schema
- S_D = a reasonable representative when no schema is available
- User-defined XML schemas are too general (*, +, recursion, ...) \Rightarrow S_D can be more precise

XML Schemas and Grammars

An <u>extended context-free grammar</u> is quadruple G = (N,T,P,S), where N and T are finite sets of nonterminals and terminals, P is a finite set of productions and S is a non terminal called a start symbol. Each production is of the form $A \rightarrow \alpha$, where $A \in$ N and α is a regular expression over alphabet N \cup T.

Given the alphabet Σ , a <u>regular expression</u> (RE) over Σ is inductively defined as follows:

- \oslash (empty set) and ε (empty string) are REs
- $\forall a \in \Sigma : a is a RE$
- If r and s are REs over Σ, then (rs) (concatenation), (r|s) (alternation) and (r*) (Kleene closure) are REs
- DTD adds: $(s|\epsilon) = (s?)$, $(s s^*) = (s+)$, concatenation = ','
- □ XML Schema adds: unordered sequence

Introduction Existing Approaches Proposed Improvement Conclusion

Existing Approaches

- □ Main focus: Inference of REs (content models)
 - DTD aspect
 - Aim: Concise and precise
- Gold's theorem: Regular languages are not identifiable in the limit only from positive examples (valid XML documents)
- Heuristic = no theoretic basis
 - Generalization of a trivial schema
 - Rules: "If there are > 3 occurrences of element E, it can occur arbitrary times $\Rightarrow E^+$ or $E^{*''}$
- □ Inferring a grammar
 - Inference of identifiable subclasses of regular languages

Classical Steps

- **1.** Derivation of initial grammar (IG)
 - For each element E and its subelements $E_1, E_2, ..., E_n$ we create production $E \rightarrow E_1 E_2 ... E_n$
- 2. Clustering of rules of IG
 - According to element names vs. broader context
- **3.** Construction of prefix tree automaton (PTA) for each cluster
- 4. Generalization of PTAs
 - Merging state algorithms
- **5.** Inference of simple data types and integrity constraints
 - Often ignored
- 6. Refactorization
 - Correction and simplification of the derived REs
- 7. Expressing the inferred REs in target XML schema language
 - Most common: Direct rewriting of REs to content models

Example (1)

```
<person id="123">
 <name>
  <first>lrena</first>
  <surname>Mlynkova</surname>
 </name>
 <email>irena.mlynkova@gmail.com</email>
 <email>irena.mlynkova@mff.cuni.cz</email>
</person>
<person id="456" holiday="yes">
 <name>
  <surname>Necasky</surname>
  <first>Martin</first>
 </name>
 one>123-456-789
 <email>martin.necasky@mff.cuni.cz</email>
</person>
. . .
```

person \rightarrow name email email person \rightarrow name phone email

name \rightarrow first surname name \rightarrow surname first

first \rightarrow PCDATA surname \rightarrow PCDATA email \rightarrow PCDATA phone \rightarrow PCDATA

person:

Example (2)

person \rightarrow name email address person \rightarrow name address

person \rightarrow name email address person \rightarrow name phone address

Introduction Existing Approaches Proposed Improvement Conclusion

Our Approach

- Assumption: We are provided with the original, but already obsolete schema S_{orig}
 - Analysis of real-world XML data: quite common situation
 - □ Schema = a kind of documentation
 - □ Schema is not used for validation of XML data
 - \Rightarrow not updated with the data
- Idea: Exploitation of the information which was correct once
- \Rightarrow Aim:
 - Optimization of the inference approach
 - Exploitation of useful source of information

General Observations

$$\begin{array}{c}
\mathsf{E} \to \mathsf{A} \mathsf{B} \mathsf{C} \mathsf{C} \mathsf{C} \mathsf{C} \\
\mathsf{E} \to \mathsf{A} \mathsf{B} \mathsf{C} \mathsf{C}
\end{array}$$

$$E \rightarrow A (B \mid X) C+$$

 $E \rightarrow A B C C C C$ $E \rightarrow A B C C C$

$$E \rightarrow A B C+ X$$

- General idea: Checking correctness and adaptation of
 - Simple data types
 - $\square \quad \text{Trivial} \Rightarrow \text{generally ignored}$
 - Element/attribute names
 - □ Equivalent cases vs. semantic similarity ⇒ finding a mapping
 - REs
- Possible situations:
 - 1. Documents in D are valid against S_{orig} ; S_{orig} is enough concise and precise
 - 2. Documents in D are valid against S_{orig} ; S_{orig} is too general
 - 3. Documents in D are not valid against S_{orig}

Proposed Solution

- □ Step 1: Correction of the input schema
 - Assumption: $\exists d \in D$ s.t. d is not valid against S_{orig}
 - Aim: to find schema $S_{correct}$ = correction of S_{orig} s.t. □ For $\forall d \in D$: d is valid against $S_{correct}$ and □ dist(S_{orig} , $S_{correct}$) ≤ dist(S_{orig} , S) for $\forall S \in \Sigma_{correct}$; where $\Sigma_{correct}$ is the set of all possible corrections of S_{orig}
 - \Rightarrow Output: S_{correct}
- □ Step 2: Specialization of the input schema
 - Assumption: $\forall d \in D$: d is valid against $S_{correct}$
 - Aim: to specialize REs in S_{correct} with regard to D
 - \Rightarrow Output: S'_{correct}

Step 1. Schema Correction

Schema correction:

- 1. We divide D into sets D_{valid} and $D_{invalid}$ s.t. $D_{valid} \cup D_{invalid} = D$ and $D_{valid} \cap D_{invalid} = \emptyset$
- 2. For $\forall \in D_{invalid}$ we create the respective set of productions $\{p_1, p_2, ..., p_m\}$ and merge them with $S_{orig} = \{q_1, q_2, ..., q_n\}$
- Merging strategy for p_i
 - 1. Finding q_i to be merged with
 - Same as the original clustering strategy
 - 2. Parsing of model(p_i) and checking validity against model(q_i) \Rightarrow PTA
 - 3. Merging states of PTA
 - Modified strategy

Merging State Strategy

- Combinatorial optimization problem (COP)
 - A search space Σ of solutions (feasible region)
 - A set Ω of constraints over Σ
 - Evaluation function $f: \Sigma \to \mathbb{R}_0^+$ (objective function)

Our case:

- Σ = a set of possible generalizations of input schema S_{input}
- Ω is given by the features of XML schema language
 - f = evaluates the quality of given $S \in \Sigma$
 - MDL (Minimum Description Length) principle
 - Good schema is enough general ⇒ low number of states of automaton
 - Good schema preserves details ⇒ express instances using short codes
- **Problem:** Σ is theoretically infinite \Rightarrow heuristics \Rightarrow suboptimal solution
 - Search algorithm: ACO (Ant Colony Optimization)

Ant Colony Optimization (ACO)

- Meta-heuristics for solving COPs
- □ Idea: Artificial ants iteratively search space Σ and improve S_{input}
- Ant
 - Searches a subspace of Σ until it "dies"
 - After performing N_{ant} steps
 - Spreads "pheromone"
 - Positive feedback = how good solution it has found so far
 - Exploits spread pheromone of other ants to select next step
 - □ Step = a possible way of schema generalization
 - Selected randomly, probability is given by f

Possible Steps of Ants

Existing works:

- k,h-context method: "Two states t_x and t_y of an automaton are identical if there exist identical paths of length k terminating in t_x and t_y."
- s,k-string method: Nerod's equivalency: "Two states t_x and t_y of an automaton are equivalent if all paths of length k leading from t_x and t_y are equivalent."
- Problem: We do not want to modify the original automaton
- Solution: We merge only if the set of merged states involves at least one of the states of the new branch
- □ Situations:
 - 1. We truncate the new branch
 - Merging within the branch
 - 2. We reduce the number of states of the whole automaton
 - Merging of new states with original ones

Step 2. Schema Specialization

- □ Assumption: $\forall d \in D$: d is valid against S_{correct}
- □ Aim: to specialize REs involved in $S_{correct}$ with regard to D ⇒ Output: $S'_{correct}$
- Idea: Parsing of documents in D and checking preciseness of S'_{correct}
- Steps:
 - 1. Pruning of unused schema fragments
 - Correction of lower and upper bounds of occurrences of schema fragments
 - 3. Correction of operators
 - 4. Refactorization

1. Pruning of Unused Schema Fragments

□ Idea: $\forall e \in S_{correct}$ we set usage flag $\phi_{used}(e)$ $E \rightarrow A C$ $E \rightarrow A B \star C? Q?$ $E \rightarrow A B B B C$ $E \rightarrow A B C$ $E \rightarrow A B B B B$ $\bigcup_{E \to A} B * C? Q?$ T F T F $E \rightarrow A B \star C? Q?$ T T T FNote: Elimination of unused $E \rightarrow A B \star C?$ schema fragments preserves correctness of content models

2. Correction of Lower and Upper Bounds

□ Idea: $\forall e \in S_{correct}$ we set minimum and maximum repetition flag $\phi_{min}(e)$ and $\phi_{max}(e)$

$E \rightarrow A = E$	\rightarrow A+ / E	3 (C	D)				
$\begin{array}{cccc} E & \rightarrow & B \\ E & \rightarrow & A & A \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $		$E \rightarrow$	A+	1	В	1	(C D)
	Start:	φ_{min}	∞		∞		∞
		φ_{max}	0		0		0
	$E \rightarrow A$	φ_{min}	1		0		0
		φ_{max}	1		0		0
	$E \rightarrow B$	φ_{min}	0		0		0
		φ_{max}	1		1		0
	$E \rightarrow A A$	φ_{min}	0		0		0
		φ_{max}	2		1		0

D Note: $\phi_{min}(e)$ and $\phi_{max}(e)$ cover $\phi_{used}(e)$

January 19 - 23, 2009

ACSW'09 - Wellington, New Zealand

Correction of Operators Factorization

 $\begin{array}{c} a?, b? \rightarrow (a, b)? \\ a?, b^* \rightarrow (a, b^+)? \\ \hline a?, b? \rightarrow a | b \\ a?, b^* \rightarrow a | b^* \end{array}$

Restriction of content models

- Can be applied only if validity is not violated
- Improving readability, simplification of structure
 - Classical step

$$\begin{array}{c} a?? \rightarrow a?\\ a^{++} \rightarrow a^{+}\\ a^{*+} \rightarrow a^{*}\\ a^{**} \rightarrow a^{*}\\ a?^{*} \rightarrow a^{*}\\ a?^{*} \rightarrow a^{*}\\ a^{++} \rightarrow a^{*}\\ a^{*+} \rightarrow a^{*}\\ a?^{+} \rightarrow a^{*}\\ a?^{+} \rightarrow a^{*}\\ aa^{*} \rightarrow a^{+}\\ a^{+}a^{*} \rightarrow a^{+}\\ a?a^{+} \rightarrow a^{*}\\ (ab)|(ac) \rightarrow a(b|c) \end{array}$$

Complexity of Algorithm

Schema correction:

- ACO heuristic
- Worst case:
 - Allowed number of iterations, number of steps of an ant, number of ants
- Schema specialization:
 - Linear parsing of documents in D and content models in S_{correct}
- □ In the worst case: S_{orig} provides no useful information \Rightarrow same complexity as in the original algorithm
 - Checking of correctness is linear
- Otherwise: We start with partly inferred schema

Introduction Existing Approaches Proposed Improvement Conclusion

Conclusion

□ Advantages of algorithm:

- Optimization of the inference process
- Exploitation of available source of information
- Exploitation of verified approaches
 ACO, MDL, merging state algorithm, ...
- Current and future work
 - Implementation
 - $\Box \quad Other improvements \Rightarrow mutual comparison of impact$
 - Exploitation
 - □ Storage strategies of XML data
 - Further improvements
 - User interaction, inference of integrity constraints, other schema languages (RELAX NG, Schematron)...

Thank you

January 19 - 23, 2009

ACSW'09 - Wellington, New Zealand