
Irena Mlýnková

Department of Software Engineering
Faculty of Mathematics and Physics
Charles University
Prague, Czech Republic

mlynkova@ksi.mff.cuni.cz 
http://www.ksi.mff.cuni.cz/~mlynkova/

On Inference of XML Schema 
with the Knowledge of an 

Obsolete One



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

2

Overview

1.
 

Introduction
2.

 
Existing Approaches

3.
 

Proposed Improvement
4.

 
Conclusion



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

3

XML = a standard for data representation and 
manipulation
XML documents + XML schema

Allowed data structure
W3C recommendations: DTD, XML Schema (XSD)
ISO standards: RELAX NG, Schematron, …

Why schema?
Known structure, valid data, limited complexity
⇒

 
Optimization

Storing, querying, updating, compressing, …

Introduction



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

4

Statistical analyses of real-word XML data:
52% of randomly crawled / 7.4% of semi-automatically 
collected documents: no schema
0.09% of randomly crawled / 38% of semi-
automatically collected documents with schema: use 
XSD
85% of randomly crawled XSDs: equivalent to DTDs

Problem:
Users do not use schemas at all 
Schema = a kind of documentation

Documents are not valid, schemas are not correct
XML Schema language is not used

Too complex, too difficult

Real-World XML Schemas



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

5

Solution:
Automatic inference of XML schema SD for a given 
set of documents D

⇒
 

Multiple solutions
Too general = accepts too many documents
Too restrictive = accepts only D

Advantages:
SD = a good initial draft for user-specified schema
SD = a reasonable representative when no schema 
is available
User-defined XML schemas are too general (*, +, 
recursion, …) ⇒ SD can be more precise

Inference of XML Schemas



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

6

An extended context-free grammar

 
is quadruple G = (N,T,P,S), 

where N

 
and T

 
are finite sets of nonterminals

 
and terminals, P

 is a finite set of productions and S

 
is a non terminal called a 

start symbol. Each production is of the form A →

 
α, where A ∈

 N and α
 

is a regular expression over alphabet N ∪

 
T.

Given the alphabet Σ, a regular expression

 
(RE) over Σ

 
is 

inductively defined as follows:
∅ (empty set) and ε (empty string) are REs
∀ a ∈ Σ : a is a RE
If r and s are REs over Σ, then (rs) (concatenation), (r|s)
(alternation) and (r*) (Kleene closure) are REs

DTD adds: (s|ε) = (s?), (s s*) = (s+), concatenation = ','
XML Schema adds: unordered sequence

XML Schemas and Grammars



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

7

Overview

1.
 

Introduction
2.

 
Existing Approaches

3.
 

Proposed Improvement
4.

 
Conclusion



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

8

Main focus: Inference of REs (content models)
DTD aspect
Aim: Concise and precise

Gold's theorem: Regular languages are not identifiable in 
the limit only from positive examples (valid XML 
documents) 
Heuristic = no theoretic basis

Generalization of a trivial schema
Rules: “If there are > 3 occurrences of element E, it can 
occur arbitrary times ⇒ E+ or E*”

Inferring a grammar
Inference of identifiable subclasses of regular languages

Existing Approaches



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

9

1. Derivation of initial grammar (IG)
For each element E and its subelements E1, E2, …, En we create 
production E → E1 E2 … En

2. Clustering of rules of IG
According to element names vs. broader context

3. Construction of prefix tree automaton (PTA) for each cluster
4. Generalization of PTAs

Merging state algorithms
5. Inference of simple data types and integrity constraints

Often ignored
6. Refactorization

Correction and simplification of the derived REs
7. Expressing the inferred REs in target XML schema language

Most common: Direct rewriting of REs to content models

Classical Steps



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

10

Example (1)



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

11

Example (2)



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

12

Overview

1.
 

Introduction
2.

 
Existing Approaches

3.
 

Proposed Improvement
4.

 
Conclusion



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

13

Assumption: We are provided with the 
original, but already obsolete schema Sorig

Analysis of real-world XML data: quite common 
situation

Schema = a kind of documentation
Schema is not used for validation of XML data

⇒
 

not updated with the data
Idea: Exploitation of the information which 
was correct once

⇒
 

Aim:
Optimization of the inference approach
Exploitation of useful source of information

Our Approach



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

14

General idea: Checking correctness and adaptation of
Simple data types

Trivial ⇒ generally ignored
Element/attribute names

Equivalent cases vs. semantic similarity ⇒ finding a 
mapping

REs
Possible situations:
1.

 
Documents in D are valid against Sorig

 

; Sorig

 

is enough 
concise and precise

2.
 

Documents in D are valid against Sorig

 

; Sorig

 

is too 
general

3.
 

Documents in D are not valid against Sorig

General 
Observations

E → A B C C C
E → A B C C

E → A (B | X) C+

E → A B C C C
E → A B C C

E → A B C+ X



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

15

Step 1: Correction of the input schema
Assumption: ∃ d ∈ D s.t. d is not valid against Sorig
Aim: to find schema Scorrect = correction of Sorig s.t. 

For ∀ d ∈ D : d is valid against Scorrect and
dist(Sorig, Scorrect) ≤ dist(Sorig, S) for ∀ S ∈
Σcorrect; where Σcorrect is the set of all possible 
corrections of Sorig

⇒
 

Output: Scorrect

Step 2: Specialization of the input schema
Assumption: ∀ d ∈ D : d is valid against Scorrect
Aim: to specialize REs in Scorrect with regard to D 

⇒
 

Output: S'correct

Proposed Solution



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

16

Schema correction:
1.

 
We divide D into sets Dvalid

 

and Dinvalid

 

s.t. Dvalid

 

∪
 Dinvalid

 

= D and Dvalid

 

∩
 

Dinvalid

 

= ∅
2.

 
For ∀ ∈ Dinvalid

 

we create the respective set of 
productions {p1

 

, p2

 

, …
 

pm

 

} and merge them with 
Sorig

 

= {q1

 

, q2

 

, …
 

qn

 

}
Merging strategy for pi

1.
 

Finding qj

 

to be merged with
Same as the original clustering strategy

2.
 

Parsing of model(pi

 

) and checking validity against 
model(qj

 

) ⇒
 

PTA
3.

 
Merging states of PTA

Modified strategy

Step 1. Schema Correction



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

17

Example
qj

 

:

pi

 

:

Merged:

PTA:



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

18

Combinatorial optimization problem (COP)
A search space Σ of solutions (feasible region)
A set Ω of constraints over Σ
Evaluation function f : Σ→ R0

+ (objective function)
Our case: 

Σ = a set of possible generalizations of input schema Sinput
Ω is given by the features of XML schema language
f = evaluates the quality of given S ∈ Σ

MDL (Minimum Description Length) principle
Good schema is enough general ⇒ low number of 
states of automaton
Good schema preserves details ⇒ express 
instances using short codes

Problem: Σ is theoretically infinite ⇒ heuristics ⇒ suboptimal solution
Search algorithm: ACO (Ant Colony Optimization)

Merging State Strategy



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

19

Ant Colony Optimization (ACO)
Meta-heuristics for solving COPs
Idea: Artificial ants iteratively search space Σ and improve 
Sinput
Ant

Searches a subspace of Σ until it “dies”
After performing Nant steps

Spreads “pheromone”
Positive feedback = how good solution it has found so far

Exploits spread pheromone of other ants to select 
next step

Step = a possible way of schema generalization
Selected randomly, probability is given by f



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

20

Possible Steps of Ants
Existing works:

k,h-context method: “Two states tx and ty of an 
automaton are identical if there exist identical paths of 
length k terminating in tx and ty.”
s,k-string method: Nerod’s equivalency: “Two states tx
and ty of an automaton are equivalent if all paths of 
length k leading from tx and ty are equivalent.”

Problem: We do not want to modify the original automaton
Solution: We merge only if the set of merged states involves 
at least one of the states of the new branch
Situations:

1.
 

We truncate the new branch
Merging within the branch

2.
 

We reduce the number of states of the whole automaton
Merging of new states with original ones



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

21

Assumption: ∀ d ∈ D : d is valid against Scorrect
Aim: to specialize REs involved in Scorrect with regard to D 
⇒

 
Output: S'correct

Idea: Parsing of documents in D and checking preciseness 
of S'correct
Steps:
1.

 
Pruning of unused schema fragments

2.
 

Correction of lower and upper bounds of occurrences of 
schema fragments

3.
 

Correction of operators
4.

 
Refactorization

Step 2. Schema Specialization



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

22

Idea: ∀ e ∈ Scorrect we set usage flag φused(e)

1. Pruning of Unused Schema 
Fragments

Note: Elimination of unused 
schema fragments preserves 
correctness of content models



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

23

2. Correction of Lower and 
Upper Bounds 

Idea: ∀ e ∈ Scorrect we set minimum and maximum 
repetition flag φmin(e) and φmax(e)

Note: φmin(e) and φmax(e) cover φused(e)



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

24

3. Correction of Operators 
4. Factorization

Restriction of content models
Can be applied only if validity 
is not violated

Improving readability, 
simplification of structure 

Classical step



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

25

Schema correction:
ACO heuristic
Worst case: 

Allowed number of iterations, number of steps of an ant, 
number of ants

Schema specialization:
Linear parsing of documents in D and content models in 
Scorrect

In the worst case: Sorig provides no useful information ⇒
same complexity as in the original algorithm

Checking of correctness is linear
Otherwise: We start with partly inferred schema

Complexity of Algorithm



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

26

Overview

1.
 

Introduction
2.

 
Existing Approaches

3.
 

Proposed Improvement
4.

 
Conclusion



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

27

Advantages of algorithm:
Optimization of the inference process
Exploitation of available source of information
Exploitation of verified approaches

ACO, MDL, merging state algorithm, …

Current and future work
Implementation

Other improvements ⇒ mutual comparison of impact 
Exploitation

Storage strategies of XML data
Further improvements

User interaction, inference of integrity constraints, other 
schema languages (RELAX NG, Schematron)…

Conclusion



January 19 - 23, 2009 ACSW'09 - Wellington, New 
Zealand

28

Thank you


	Snímek číslo 1
	Overview
	Introduction
	Real-World XML Schemas
	Inference of XML Schemas
	XML Schemas and Grammars
	Overview
	Existing Approaches
	Classical Steps
	Example (1)
	Example (2)
	Overview
	Our Approach
	General �Observations
	Proposed Solution
	Step 1. Schema Correction
	Example
	Merging State Strategy
	Ant Colony Optimization (ACO)
	Possible Steps of Ants
	Step 2. Schema Specialization
	1. Pruning of Unused Schema Fragments
	2. Correction of Lower and Upper Bounds 
	3. Correction of Operators �4. Factorization
	Complexity of Algorithm
	Overview
	Conclusion
	Thank you

