
Modern Database

Systems

Graph databases

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

Graph Databases
Basic Characteristics

 To store entities and relationships between these entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

 Nodes are organized by relationships
 Allow to find interesting patterns

 e.g., “Get all people employed by Big Co that like NoSQL
Distilled”

Example:

Graph Databases
RDBMS vs. Graph Databases

 When we store a graph-like structure in RDBMS, it is for a single
type of relationship
 “Who is my manager”

 Adding another relationship usually means schema changes, data
movement etc.

 In graph databases relationships can be dynamically created / deleted
 There is no limit for number and kinds

 In RDBMS we model the graph beforehand based on the Traversal
we want
 If the Traversal changes, the data will have to change

 We usually need a lot of join operations

 In graph databases the relationships are not calculated at query time
but persisted
 Shifting the bulk of the work of navigating the graph to inserts, leaving

queries as fast as possible

Graph Databases
Basic Characteristics

 Nodes can have different types of relationships between
them
 To represent relationships between the domain entities

 To have secondary relationships

 Category, path, time-trees, quad-trees for spatial indexing, linked
lists for sorted access, …

 There is no limit to the number and kind of relationships
a node can have

 Relationships have type, start node, end node, own
properties
 e.g., since when did they become friends

Graph Databases
Representatives

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Neo4j

 Open source graph database
 The most popular

 Initial release: 2007

 Written in: Java

 OS: cross-platform

 Stores data in nodes connected by
directed, typed relationships
 With properties on both

 Called property graph

http://www.neo4j.org/

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://www.neo4j.org/

Neo4j
Main Features (according to authors)

 intuitive – a graph model for data representation

 reliable – with full ACID transactions

 durable and fast – disk-based, native storage engine

 massively scalable – up to several billions of nodes /
relationships / properties

 highly-available – when distributed across multiple
machines

 expressive – powerful, human readable graph query
language

 fast – powerful traversal framework

 embeddable

 simple – accessible by REST interface / object-oriented
Java API

RDBMS vs. Neo4j

 RDBMS is optimized for aggregated data

 Neo4j is optimized for highly connected data

Key-Value (Column Family) Store

vs. Neo4j
 Key-Value model is for lookups of simple values or lists

 Column family store can be considered as a step in evolution of
key/value stores

 The value contains a list of columns

 Neo4j lets you elaborate the simple data structures into more
complex data
 Interconnected

Document Store vs. Neo4j

 Document
database
accommodates
data that can
easily be
represented as
a tree
 Schema-free

 References to
other
documents
within the tree =
more
expressive
representation

Neo4j
Data Model – Node, Relationship, Property

 Fundamental units: nodes + relationships

 Both can contain properties
 Key-value pairs where the key is a string

 Value can be primitive or an array of one

primitive type
 e.g., String, int, int[], …

 null is not a valid property value
 nulls can be modelled by the absence of a key

 Relationships
 Directed (incoming and outgoing edge)

 Equally well traversed in either direction = no need to add both
directions to increase performance

 Direction can be ignored when not needed by applications

 Always have start and end node

 Can be recursive

Type Description Value range

boolean true/false

byte 8-bit integer -128 to 127, inclusive

short 16-bit integer -32768 to 32767, inclusive

int 32-bit integer -2147483648 to 2147483647,

inclusive

long 64-bit integer -9223372036854775808 to

9223372036854775807,

inclusive

float 32-bit IEEE 754 floating-point

number

double 64-bit IEEE 754 floating-point

number

char 16-bit unsigned integers

representing Unicode

characters

u0000 to uffff (0 to 65535)

String sequence of Unicode characters

Node Labels/Edge Types

 Later extension

 Nodes can have 0

or more labels

For logical

grouping

 Edges must have a

single type

Neo4j
“Hello World” Graph – Java API

// enum of types of relationships:

private static enum RelTypes implements RelationshipType

{

KNOWS

};

GraphDatabaseService graphDb;

Node firstNode;

Node secondNode;

Relationship relationship;

// starting a database (directory is created if not exists):

graphDb = new
GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

// …

Neo4j
“Hello World” Graph

// create a small graph:

firstNode = graphDb.createNode();

firstNode.setProperty("message", "Hello, ");

secondNode = graphDb.createNode();

secondNode.setProperty("message", "World!");

relationship = firstNode.createRelationshipTo

(secondNode, RelTypes.KNOWS);

relationship.setProperty

("message", "brave Neo4j ");

// …

Neo4j
“Hello World” Graph

// print the result:

System.out.print(firstNode.getProperty("message"));

System.out.print(relationship.getProperty("message"));

System.out.print(secondNode.getProperty("message"));

// remove the data:

firstNode.getSingleRelationship

(RelTypes.KNOWS, Direction.OUTGOING).delete();

firstNode.delete();

secondNode.delete();

// shut down the database:

graphDb.shutdown();

Neo4j
“Hello World” Graph – Transactions

// all writes (creating, deleting and updating any data)

// have to be performed in a transaction,

// otherwise NotInTransactionException

Transaction tx = graphDb.beginTx();

try

{

// updating operations go here

tx.success(); // transaction is committed on close

}

catch (Exception e)

{

tx.failure(); // transaction is rolled back on close

}

finally

{

tx.close(); // or deprecated tx.finish()

}

Neo4j
Data Model – Path, Traversal

 Path = one or more nodes
with connecting
relationships
 Typically retrieved as a

query or traversal result

 Traversing a graph =
visiting its nodes, following
relationships according to
some rules
 Mostly a subgraph is visited

 Neo4j: Traversal framework
+ Java API, Cypher, Gremlin

Neo4j
Traversal Framework

 A traversal is influenced by

 Expanders – define what to traverse

 i.e., relationship direction and type

 Order – depth-first / breadth-first

 Uniqueness – visit nodes (relationships, paths) only

once

 Evaluator – what to return and whether to stop or

continue traversal beyond a current position

 Starting nodes where the traversal will begin

Neo4j
Traversal Framework – Java API

 TraversalDescription
 The main interface used for defining and initializing traversals

 Not meant to be implemented by users
 Just used

 Can specify branch ordering
 breadthFirst() / depthFirst()

 Relationships
 Adds a relationship type to traverse

 Empty (default) = traverse all relationships

 At least one in the list = traverse the specified ones

 Two methods: including / excluding direction
 Direction.BOTH

 Direction.INCOMING

 Direction.OUTGOING

Neo4j
Traversal Framework – Java API

 Evaluator
 Used for deciding at each position: should the traversal continue,

and/or should the node be included in the result

 Actions:
 Evaluation.INCLUDE_AND_CONTINUE: Include this node in the

result and continue the traversal

 Evaluation.INCLUDE_AND_PRUNE: Include this node in the
result, but do not continue the traversal

 Evaluation.EXCLUDE_AND_CONTINUE: Exclude this node from
the result, but continue the traversal

 Evaluation.EXCLUDE_AND_PRUNE: Exclude this node from the
result and do not continue the traversal

 Pre-defined evaluators:
 Evaluators.excludeStartPosition()

 Evaluators.toDepth(int depth) /
Evaluators.fromDepth(int depth)

 …

Neo4j
Traversal Framework – Java API

 Uniqueness
 Can be supplied to the TraversalDescription

 Indicates under what circumstances a traversal may revisit the
same position in the graph

 NONE: Any position in the graph may be revisited.

 NODE_GLOBAL: No node in the graph may be re-visited (default)

 …

 Traverser
 Traverser which is used to step through the results of a traversal

 Steps can correspond to

 Path (default)

 Node

 Relationship

Neo4j
Example

group

hierarchy

membership

of a group

top level

group

Neo4j
Task 1. Get the Admins

Node admins = getNodeByName("Admins");

TraversalDescription traversalDescription = Traversal.description()

.breadthFirst()

.evaluator(Evaluators.excludeStartPosition())

.relationships(RoleRels.PART_OF, Direction.INCOMING)

.relationships(RoleRels.MEMBER_OF, Direction.INCOMING);

Traverser traverser = traversalDescription.traverse(admins);

String output = "";

for (Path path : traverser)

{

Node node = path.endNode();

output += "Found: "

+ node.getProperty(NAME) + " at depth: "

+ (path.length() - 1) + "\n";

}

Found: HelpDesk at depth: 0

Found: Ali at depth: 0

Found: Engin at depth: 1

Found: Demet at depth: 1

Neo4j
Task 2. Get Group Membership of a User

Node jale = getNodeByName("Jale");

traversalDescription = Traversal.description()

.depthFirst()

.evaluator(Evaluators.excludeStartPosition())

.relationships(RoleRels.MEMBER_OF, Direction.OUTGOING)

.relationships(RoleRels.PART_OF, Direction.OUTGOING);

traverser = traversalDescription.traverse(jale);

Found: ABCTechnicians at depth: 0

Found: Technicians at depth: 1

Found: Users at depth: 2

Neo4j
Task 3. Get All Groups

Node referenceNode = getNodeByName("Reference_Node") ;

traversalDescription = Traversal.description()

.breadthFirst()

.evaluator(Evaluators.excludeStartPosition())

.relationships(RoleRels.ROOT, Direction.INCOMING)

.relationships(RoleRels.PART_OF, Direction.INCOMING);

traverser = traversalDescription.traverse(referenceNode);

Found: Admins at depth: 0

Found: Users at depth: 0

Found: HelpDesk at depth: 1

Found: Managers at depth: 1

Found: Technicians at depth: 1

Found: ABCTechnicians at depth: 2

Neo4j
Task 4. Get All Members of a Group

Node referenceNode = getNodeByName("Reference_Node") ;

traversalDescription = Traversal.description()

.breadthFirst()

.evaluator(

Evaluators.includeWhereLastRelationshipTypeIs

(RoleRels.MEMBER_OF));

traverser = traversalDescription.traverse(referenceNode);

Found: Ali at depth: 1

Found: Engin at depth: 1

Found: Burcu at depth: 1

Found: Can at depth: 1

Found: Demet at depth: 2

Found: Gul at depth: 2

Found: Fuat at depth: 2

Found: Hakan at depth: 2

Found: Irmak at depth: 2

Found: Jale at depth: 3

Gremlin

 Gremlin = graph traversal language for
traversing property graphs
 Maintained by TinkerPop

 Open source software development group

 Focuses on technologies related to graph databases

 Implemented by most graph database vendors

 Neo4j Gremlin Plugin

 Scripts are executed on the server database

 Results are returned as Neo4j Node and
Relationship representations

http://gremlindocs.com/

http://gremlindocs.com/

Gremlin
Property Graph

http://www.slideshare.net/sakrsherif/gremlin

http://www.slideshare.net/sakrsherif/gremlin

TinkerPop and Related Stuff

 Blueprints – interface for graph databases

 Like ODBC (JDBC) for graph databases

 Pipes – dataflow framework for evaluating

graph traversals

 Groovy – superset of Java used by

Gremlin as a host language

http://www.tinkerpop.com/http://groovy.codehaus.org/

http://www.tinkerpop.com/
http://blueprints.tinkerpop.com/
http://blueprints.tinkerpop.com/
http://pipes.tinkerpop.com/
http://pipes.tinkerpop.com/
http://groovy.codehaus.org/

Gremlin
Examples

https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals

https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals

Gremlin
Examples

gremlin> g = new Neo4jGraph('I:\\tmp\\myDB.graphdb')

==> neo4jgraph[EmbeddedGraphDatabase[I:\tmp\myDB.graphdb]]

gremlin> v = g.v(1)

==>v[1]

gremlin> v.outE

==>e[7][1-knows->2]

==>e[9][1-created->3]

==>e[8][1-knows->4]

gremlin> v.outE.inV

==>v[2]

==>v[3]

==>v[4]

gremlin> v.outE.inV.outE.inV

==>v[5]

==>v[3]

Gremlin steps:

• adjacency: outE, inE, bothE, outV,

inV, bothV

• to skip edges: out, in, and both

Gremlin
Examples

gremlin> list = [v]

gremlin> for(i in 1..2)

list = list._().out.collect{it}

gremlin> list

==>v[5]

==>v[3]

gremlin> v.as('x').outE.inV.loop('x'){it.loops < 3}

==>v[5]

==>v[3]

the same using for iteration

the same using loop

it component of the loop step closure has three properties:

• it.object : the current object of the traverser

• it.path : the current path of the traverser

• it.loops : the number of times the traverser has looped

through the loop section

Gremlin
Examples

gremlin> v = g.v(1)

==>v[1]

gremlin> v.name

==>marko

gremlin> v.outE('knows').inV.filter{it.age > 30}.name

==>josh

gremlin> v.out('knows').filter{it.age > 21}.

as('x').name.filter{it.matches('jo.{2}|JO.{2}')}.

back('x').age

==>32 regular expression

variable

Gremlin
Examples

gremlin> g.v(1).note= "my friend" // set a property

==> my friend

gremlin> g.v(1).map // get property map

==> {name=marko, age=29, note=my friend}

gremlin> v1= g.addVertex([name: "irena"])

==> v[7]

gremlin> v2 = g.v(1)

==> v[1]

gremlin> g.addEdge(v1, v2, 'knows')

==> e[7][7-knows->1]

Cypher

 Neo4j graph query language

 For querying and updating

 Declarative – we describe what we want, not

how to get it

 Not necessary to express traversals

 Human-readable

 Inspired by SQL and SPARQL

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Cypher Clauses

 START: Starting points in the graph, obtained via index
lookups or by element IDs.

 MATCH: The graph pattern to match, bound to the
starting points in START.

 WHERE: Filtering criteria.

 RETURN: What to return.

 CREATE: Creates nodes and relationships.

 DELETE: Removes nodes, relationships and properties.

 SET: Set values to properties.

 FOREACH: Performs updating actions once per element
in a list.

 WITH: Divides a query into multiple, distinct parts.

Cypher Examples
Creating Nodes

CREATE (n);

0 rows available after 8 ms, consumed after another 0 ms

Added 1 nodes

CREATE (a {name : 'Andres'}) RETURN a;

+--------------------+

| a |

+--------------------+

| ({name: "Andres"}) |

+--------------------+

1 row available after 13 ms, consumed after another 0 ms

Added 1 nodes, Set 1 properties

CREATE (n {name : 'Andres', title : 'Developer'});

0 rows available after 13 ms, consumed after another 0 ms

Added 1 nodes, Set 2 properties

Cypher Examples
Creating Relationships

MATCH (a {name:"Andres"})

CREATE (a)-[r:FRIEND]->(b {name:"Jana"})

RETURN r;

+-----------+

| r |

+-----------+

| [:FRIEND] |

+-----------+

1 row available after 27 ms, consumed after another 1 ms

Added 1 node, Created 1 relationship, Set 1 property

MATCH (a {name:"Andres"})

MATCH (b {name:"Jana"})

CREATE (a)-[r:RELTYPE {name : a.name + '<->' + b.name }]->(b)

RETURN r;

1 row available after 18 ms, consumed after another 1 ms

Created 1 relationship, Set 1 property

Cypher Examples
Creating Paths

CREATE p = (andres {name:'Andres'})-[:WORKS_AT]->(neo)<-[:WORKS_AT]-

(michael {name:'Michael'})

RETURN p;

+---+

| p |

+---+

| ({name: "Andres"})-[:WORKS_AT]->()<-[:WORKS_AT]-({name: "Michael"}) |

+---+

1 row available after 188 ms, consumed after another 22 ms

Added 3 nodes, Created 2 relationships, Set 2 properties

all parts of the pattern not

already in scope are created

Cypher Examples
Changing Properties

MATCH (n { name: 'Andres' })

SET n.surname = 'Taylor'

RETURN n

| n |

+--+

| Node[0]{surname:"Taylor",name:"Andres",age:36,hungry:true} |

+--+

1 row

Properties set: 1

MATCH (n { name: 'Andres' })

SET n.name = NULL RETURN n

+-----------------------------+

| n |

+-----------------------------+

| Node[0]{hungry:true,age:36} |

+-----------------------------+

1 row

Properties set: 1

Cypher Examples
Delete

MATCH (n { name: 'Andres' })

DETACH DELETE n

+-------------------+

| No data returned. |

+-------------------+

Nodes deleted: 1

Relationships deleted: 2

MATCH (n { name: 'Andres' })-[r:KNOWS]->()

DELETE r

+-------------------+

| No data returned. |

+-------------------+

Relationships deleted: 2

Cypher Examples
Foreach

MATCH p =(begin)-[*]->(END)

WHERE begin.name = 'A' AND END.name = 'D'

FOREACH (n IN nodes(p)| SET n.marked = TRUE)

+-------------------+

| No data returned. |

+-------------------+

Properties set: 4

Cypher Examples
Querying

MATCH (john {name: 'John'})-[:friend]->()-[:friend]->(fof)

RETURN john.name, fof.name

+----------------------+

| john.name | fof.name |

+----------------------+

| "John" | "Maria" |

| "John" | "Steve" |

+----------------------+

2 rows

Cypher Examples
Querying

MATCH (user)-[:friend]->(follower)

WHERE user.name IN ['Joe', 'John', 'Sara', 'Maria', 'Steve'] AND

follower.name =~ 'S.*'

RETURN user.name, follower.name

+---------------------------+

| user.name | follower.name |

+---------------------------+

| "Joe" | "Steve" |

| "John" | "Sara" |

+---------------------------+

2 rows

Cypher Examples
Order by

MATCH (n)

RETURN n.name, n.age

ORDER BY n.name

We can use:

• multiple properties

• asc/desc

Cypher Examples
Count

MATCH (n { name: 'A' })-[r]->()

RETURN type(r), count(*)

Cypher

 And there are many other features
 Other aggregation functions

 Count, sum, avg, max, min

 LIMIT n - returns only subsets of the total result
 SKIP n = trimmed from the top

 Often combined with order by

 Predicates ALL and ANY

 Functions
 LENGTH of a path, TYPE of a relationship, ID of node/relationship,

NODES of a path, RELATIONSHIPS of a path, …

 Operators

 …

More on

Internals

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Neo4j
Transaction Management

 Support for ACID properties

 All write operations that work with the graph must be
performed in a transaction

 Can have nested transactions

 Rollback of nested transaction rollback of the whole
transaction

 Required steps:
1. Begin a transaction

2. Operate on the graph performing write operations

3. Mark the transaction as successful or not

4. Finish the transaction
 Memory + locks are released (= necessary step)

Neo4j
Transaction Example

// all writes (creating, deleting and updating any data)

// have to be performed in a transaction,

// otherwise NotInTransactionException

Transaction tx = graphDb.beginTx();

try

{

// updating operations go here

tx.success(); // transaction is committed on close

}

catch (Exception e)

{

tx.failure(); // transaction is rolled back on close

}

finally

{

tx.close(); // or deprecated tx.finish()

}

Neo4j
Transaction Management – Read

 Default:

 Read operation reads the last committed value

 Reads do not block or take any locks

 Non-repeatable reads can occur

 A row is retrieved twice and the values within the row differ

between reads

 Higher level of isolation: read locks can be

acquired explicitly

Neo4j
Transaction Management – Write

 All modifications performed in a transaction are kept in
memory
 Very large updates have to be split

 Default locking:
 Adding/changing/removing a property of a node/relationship

write lock on the node/relationship

 Creating/deleting a node write lock on the specific node

 Creating/deleting a relationship write lock on the relationship
+ its nodes

 Deadlocks:
 Can occur

 Are detected and an exception is thrown

Neo4j
Transaction Management – Delete Semantics

 Node/relationship is deleted all properties are
removed

 Deleted node can have attached relationships
 They are deleted too

 Write operation on a node or relationship after it has
been deleted (but not yet committed) exception
 It is possible to acquire a reference to a deleted relationship /

node that has not yet been committed

 After commit, trying to acquire new / work with old reference to a
deleted node / relationship exception

Neo4j
Indexing

 Index
 Has a unique, user-specified name

 Indexed entities = nodes / relationships

 Index = associating any number of key-value
pairs with any number of entities
 We can index a node / relationship with several key-

value pairs that have the same key

 An old value must be deleted to set new (otherwise
we have both)

Neo4j
Indexing – Create / Delete Index

graphDb = new
GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

IndexManager index = graphDb.index();

// check existence of an index

boolean indexExists = index.existsForNodes("actors");

// create three indexes

Index<Node> actors = index.forNodes("actors");

Index<Node> movies = index.forNodes("movies");

RelationshipIndex roles = index.forRelationships("roles");

// delete index

actors.delete();

Neo4j
Indexing – Add Nodes

Node reeves = graphDb.createNode();

reeves.setProperty("name", "Keanu Reeves");

actors.add(reeves, "name", reeves.getProperty("name"));

Node bellucci = graphDb.createNode();

bellucci.setProperty("name", "Monica Bellucci");

// multiple index values for a field

actors.add(bellucci, "name", bellucci.getProperty("name"));

actors.add(bellucci, "name", "La Bellucci");

Node matrix = graphDb.createNode();

matrix.setProperty("title", "The Matrix");

matrix.setProperty("year", 1999);

movies.add(matrix, "title", matrix.getProperty("title"));

movies.add(matrix, "year", matrix.getProperty("year"));

Neo4j
Indexing – Add Relationships, Remove

Relationship role1 =

reeves.createRelationshipTo(matrix, ACTS_IN);

role1.setProperty("name", "Neo");

roles.add(role1, "name", role1.getProperty("name"));

// completely remove bellucci from actors index

actors.remove(bellucci);

// remove any "name" entry of bellucci from actors index

actors.remove(bellucci, "name");

// remove the "name" -> "La Bellucci" entry of bellucci

actors.remove(bellucci, "name", "La Bellucci");

3 options

for removal

Neo4j
Indexing – Update

Node fishburn = graphDb.createNode();

fishburn.setProperty("name", "Fishburn");

// add to index

actors.add(fishburn, "name", fishburn.getProperty("name"));

// update the index entry when the property value changes

actors.remove

(fishburn, "name", fishburn.getProperty("name"));

fishburn.setProperty("name", "Laurence Fishburn");

actors.add(fishburn, "name", fishburn.getProperty("name"));

Neo4j
Indexing – Search using get()

// get single exact match

IndexHits<Node> hits = actors.get("name", "Keanu Reeves");

Node reeves = hits.getSingle();

Relationship persephone =

roles.get("name", "Persephone").getSingle();

Node actor = persephone.getStartNode();

Node movie = persephone.getEndNode();

// iterate over all exact matches from index

for (Relationship role : roles.get("name", "Neo"))

{

Node reeves = role.getStartNode();

}

iterator

Neo4j
Indexing – Search using query()

for (Node a : actors.query("name", "*e*"))

{

// This will return Reeves and Bellucci

}

for (Node m : movies.query("title:*Matrix* AND year:1999"))

{

// This will return "The Matrix" from 1999 only

}

Neo4j
Indexing – Search for Relationships

// find relationships filtering on start node (exact match)

IndexHits<Relationship> reevesAsNeoHits =

roles.get("name", "Neo", reeves, null);

Relationship reevesAsNeo =

reevesAsNeoHits.iterator().next();

reevesAsNeoHits.close();

// find relationships filtering on end node (using a query)

IndexHits<Relationship> matrixNeoHits =

roles.query("name", "*eo", null, theMatrix);

Relationship matrixNeo = matrixNeoHits.iterator().next();

matrixNeoHits.close();

Neo4j
Automatic Indexing

 One automatic index for nodes and one for

relationships

 Follow property values

 By default off

 We can specify properties of nodes / edges

which are automatically indexed

 We do not need to add them explicitly

 The index can be queried as any other index

Neo4j
Automatic Indexing – Setting (Option 1)

GraphDatabaseService graphDb =

new GraphDatabaseFactory().

newEmbeddedDatabaseBuilder(storeDirectory).

setConfig(GraphDatabaseSettings.node_keys_indexable,

"nodeProp1,nodeProp2").

setConfig(

GraphDatabaseSettings.relationship_keys_indexable,

"relProp1,relProp2").

setConfig(GraphDatabaseSettings.node_auto_indexing,

"true").

setConfig(GraphDatabaseSettings.relationship_auto_indexing,

"true").

newGraphDatabase();

Neo4j
Automatic Indexing – Setting (Option 2)

// start without any configuration

GraphDatabaseService graphDb = new GraphDatabaseFactory()

.newEmbeddedDatabase(storeDirectory);

// get Node AutoIndexer, set nodeProp1, nodeProp2 as auto indexed

AutoIndexer<Node> nodeAutoIndexer =
graphDb.index().getNodeAutoIndexer();

nodeAutoIndexer.startAutoIndexingProperty("nodeProp1");

nodeAutoIndexer.startAutoIndexingProperty("nodeProp2");

// get Relationship AutoIndexer, set relProp1 as auto indexed

AutoIndexer<Relationship> relAutoIndexer = graphDb.index()

.getRelationshipAutoIndexer();

relAutoIndexer.startAutoIndexingProperty("relProp1");

// none of the AutoIndexers are enabled so far - do that now

nodeAutoIndexer.setEnabled(true);

relAutoIndexer.setEnabled(true);

Neo4j
Automatic Indexing – Search

// create the primitives

node1 = graphDb.createNode();

node2 = graphDb.createNode();

rel = node1.createRelationshipTo(node2,

DynamicRelationshipType.withName("DYNAMIC"));

// add indexable and non-indexable properties

node1.setProperty("nodeProp1", "nodeProp1Value");

node2.setProperty("nodeProp2", "nodeProp2Value");

node1.setProperty("nonIndexed", "nodeProp2NonIndexedValue");

rel.setProperty("relProp1", "relProp1Value");

rel.setProperty("relPropNonIndexed",

"relPropValueNonIndexed");

Neo4j
Automatic Indexing – Search

// Get the Node auto index

ReadableIndex<Node> autoNodeIndex = graphDb.index()

.getNodeAutoIndexer().getAutoIndex();

// node1 and node2 both had auto indexed properties, get them

assertEquals(node1,

autoNodeIndex.get("nodeProp1", "nodeProp1Value")

.getSingle());

assertEquals(node2,

autoNodeIndex.get("nodeProp2", "nodeProp2Value")

.getSingle());

// node2 also had a property that should be ignored.

assertFalse(autoNodeIndex.get("nonIndexed",

"nodeProp2NonIndexedValue").hasNext());

Neo4j
Data Size

nodes 2
35

(∼ 34 billion)

relationships 2
35

(∼ 34 billion)

properties 2
36

to 2
38

depending on property types

(maximum ∼ 274 billion, always at

least ∼ 68 billion)

relationship types 2
15

(∼ 32 000)

 Since version 3.0.0 (2016) no limits in Neo4j Enterprise
Edition

Neo4j
High Availability (HA)

 Provides the following features:
 Enables a fault-tolerant database architecture

 Several Neo4j slave databases can be configured to be exact
replicas of a single Neo4j master database

 Enables a horizontally scaling read-mostly
architecture
 Enables the system to handle more read load than a single

Neo4j database instance can handle

 Transactions are still atomic, isolated and
durable, but eventually propagated to other
slaves

Neo4j
High Availability

 Transition from single machine to multi machine operation
is simple
 No need to change existing applications

 Switch from GraphDatabaseFactory to
HighlyAvailableGraphDatabaseFactory

 Both implement the same interface

 Always one master and zero or more slaves
 Write on master: eventually propagated to slaves

 All other ACID properties remain the same

 Write on slave: (immediate) synchronization with master

 Slave has to be up-to-date with master

 Operation must be performed on both

Neo4j
High Availability

 Each database instance contains the logic needed in
order to coordinate with other members

 On startup Neo4j HA database instance will try to
connect to an existing cluster specified by configuration
 If the cluster exists, it becomes a slave

 Otherwise, it becomes a master

 Failure:
 Slave – other nodes recognize it

 Master – a slave is elected as a new master

 Recovery:
 Slave – synchronizes with the cluster

 Old master – becomes a slave

Neo4j
Data on Disk

 Note: Neo4j is a schema-less database

Fixed record lengths + offsets in files

 Several types of files to store the data

File Record

size

Contents

neostore.nodestore.db 15 B Nodes

neostore.relationshipstore.db 34 B Relationships

neostore.propertystore.db 41 B Properties for nodes and relationships

neostore.propertystore.db.strings 128 B Values of string properties

neostore.propertystore.db.arrays 128 B Values of array properties

Indexed Property 1/3 *

AVG(X)

Each index entry is approximately 1/3 of the

average property value size

https://neo4j.com/developer/kb/understanding-data-on-disk/

https://neo4j.com/developer/kb/understanding-data-on-disk/

Neo4j
Data on Disk

 Data = linked lists of (fixed size) records

 Properties

Stored as a linked list of property records

 Key + value + reference to the next property

 Node - references

The first property in its property chain

The first relationship in its relationship chain

Neo4j
Data on Disk

 Relationship - references

The first property in its property chain

The start and end node

The previous and next relationship record for

the start and end node respectively

References

 Neo4j http://www.neo4j.org/

 Neo4j Manual http://docs.neo4j.org/chunked/stable/

 Neo4j Download http://www.neo4j.org/download

 Pramod J. Sadalage - Martin Fowler: NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence

 Eric Redmond - Jim R. Wilson: Seven Databases in
Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement

 Sherif Sakr - Eric Pardede: Graph Data Management:
Techniques and Applications

http://www.neo4j.org/
http://docs.neo4j.org/chunked/stable/
http://www.neo4j.org/download

