
Modern Database

Systems

Key/value stores

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

Key-value store
Basic characteristics

 The simplest NoSQL data store
 A hash table (map)

 When all access to the database is via primary key

 Like a table in RDBMS with two columns:
 ID = key

 CONTENT = value
 BLOB with any data

 Basic operations:
 get the value for a key

 put a value for a key
 If the value exists, it is overwritten

 delete a key from the data store

 simple great performance, easily scaled

 simple not for complex queries, aggregation needs, …

Key-value store
Representatives

Project

Voldemort

MemcachedDB

not open-source

open-source

version

http://en.wikipedia.org/wiki/File:Redis_Logo.svg
http://en.wikipedia.org/wiki/File:Redis_Logo.svg
http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png

Key-value store
Suitable Use Cases

Storing Session Information

 Every web session is assigned a unique session_id value

 Everything about the session can be stored by a single PUT request
or retrieved using a single GET

 Fast, everything is stored in a single object

User Profiles, Preferences

 Every user has a unique user_id, user_name + preferences (e.g.,
language, colour, time zone, which products the user has access to,
…)

 As in the previous case:
 Fast, single object, single GET/PUT

Shopping Cart Data

 Similar to the previous cases

Key-value store
When Not to Use

Relationships among Data

 Relationships between different sets of data

 Some key-value stores provide link-walking features
 Not usual

Multioperation Transactions

 Saving multiple keys
 Failure to save any one of them → revert or roll back the rest of the

operations

Query by Data

 Search the keys based on something found in the value part

Operations by Sets

 Operations are limited to one key at a time

 No way to operate upon multiple keys at the same time

Key-value store
Query

 We can query by the key

 To query using some attribute of the value column is
(typically) not possible
 We need to read the value to figure out if the attribute meets the

conditions

 What if we do not know the key?
 Some systems enable to retrieve the list of all keys

 Expensive

 Some support searching inside the value
 Using, e.g., a kind of full-text index

 The data must be indexed first

 Riak search (see later)

Key-value store
Query

 How to design the key?
 Generated by some algorithm

 Provided by the user

 e.g., userID, e-mail

 Derived from time-stamps (or other data)

 Typical candidates for storage: session data (with the
session ID as the key), shopping cart data (user ID),
user profiles (user ID), …

 Expiration of keys
 After a certain time interval

 Useful for session/shopping cart objects

Key-value store
Riak

 Open source, distributed database
 First release: 2009

 Implementing principles from Amazon's Dynamo

 OS: Linux, BSD, Mac OS X, Solaris

 Language: Erlang, C, C++, some parts in JavaScript

 Built-in MapReduce support

 Stores keys into buckets = a namespace for keys
 Like tables in a RDBMS, directories in a file system, …

 Have a set of common properties for its contents

 e.g., number of replicas

http://basho.com/riak/

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://basho.com/riak/

Riak Buckets

Single object for all data,

everything in a single bucket

Terminology in Oracle vs. Riak

Adding type of data to the key,

still everything in a single bucket

namespace

for keys

Separate buckets for different

types of data

Key-value store
Example

Bucket bucket = getBucket(bucketName);

IRiakObject riakObject =

bucket.store(key, value).execute();

Bucket bucket = getBucket(bucketName);

IRiakObject riakObject =

bucket.fetch(key).execute();

byte[] bytes = riakObject.getValue();

String value = new String(bytes);

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png

Riak Usage

 HTTP – default interface
 GET (retrieve), PUT (update), POST (create), DELETE (delete)

 Other interfaces: Protocol Buffers, Erlang interface

 We will use curl (curl --help)
 Command-line tool for transferring data using various protocols

 Keys and buckets in Riak:
 Keys are stored in buckets (= namespaces) with common properties

 n_val – replication factor

 allow_mult – allowing concurrent updates

 …

 If a key is stored into a non-existing bucket, it is created

 Keys may be user-specified or generated by Riak

 Paths:
 /riak/<bucket>

 /riak/<bucket>/<key>

a particular bucket

key in a bucket

Riak Usage – Examples
Working with Buckets

 List all buckets:
curl http://localhost:10011/riak?buckets=true

 Get properties of bucket foo:

curl http://localhost:10011/riak/foo/

 Get all keys in bucket foo:

curl http://localhost:10011/riak/foo?keys=true

 Change properties of bucket foo:

curl -X PUT http://localhost:10011/riak/foo -H
"Content-Type: application/json" -d '{"props" : {
"n_val" : 2 } }'

Riak Usage – Examples
Working with Data

 Storing a plain text into bucket foo using a generated key:

curl -i -H "Content-Type: plain/text" -d "My text"
http://localhost:10011/riak/foo/

 Storing a JSON file into bucket artists with key Bruce:

curl -i -H "Content-Type: application/json" -d
'{"name":"Bruce"}'
http://localhost:10011/riak/artists/Bruce

 Getting an object:

curl http://localhost:10011/riak/artists/Bruce

HTTP POST

HTTP GET

Riak Usage – Examples
Working with Data

 Updating an object:
curl -i -X PUT -H "Content-Type: application/json" -

d '{"name":"Bruce", "nickname":"The Boss"}'
http://localhost:10011/riak/artists/Bruce

curl http://localhost:10011/riak/artists/Bruce

 Deleting an object:
curl -i -X DELETE

http://localhost:10011/riak/artists/Bruce

curl http://localhost:10011/riak/artists/Bruce

check the value

HTTP PUT

HTTP DELETE

Riak Links
 Allow to create relationships between objects

 Like, e.g., foreign keys in relational databases, or associations in UML

 Attached to objects via Link header

 Add albums and links to the performer:
curl -H "Content-Type: text/plain" -H 'Link:

</riak/artists/Bruce>; riaktag="performer"' -d
"The River"
http://localhost:10011/riak/albums/TheRiver

curl -H "Content-Type: text/plain" -H 'Link:
</riak/artists/Bruce>; riaktag="performer"' -d
"Born To Run"
http://localhost:10011/riak/albums/BornToRun

Riak Links

 Find the artist who performed the album The

River

curl -i

http://localhost:10011/riak/albums/T

heRiver/artists,performer,1

 Restrict to bucket artists

 Restrict to tag performer

 1 = include this step to the result

Riak Links

 Which artists collaborated with
the artist who performed The
River

curl -i
http://localhost:10011/
riak/albums/TheRiver/ar
tists,_,0/artists,colla
borator,1

 _ = wildcard (any relationship)

 0 = do not include this step to the
result

Assuming

such data

Riak Search

 A distributed, full-text search engine

 Provides the most advanced query capability next to
MapReduce

 Key features:
 Support for various mime types

 JSON, XML, plain text, …

 Support for various analyzers (to break text into tokens)

 A white space analyzer, an integer analyzer, a no-op analyzer, …

 Exact match queries

 Scoring and ranking for most relevant results

 …

Riak Search

 First the data must be indexed:

1. Reading a document

2. Splitting the document into one or more fields

3. Splitting the fields into one or more terms

4. Normalizing the terms in each field

5. Writing {Field, Term, DocumentID} to an

index

 Indexing: index <INDEX> <PATH>

 Searching: search <INDEX> <QUERY>

Riak Search

 Queries:
 Wildcards: Bus*, Bus?

 Range queries:

 [red TO rum] = documents with words containing "red" and
"rum", plus any words in between

 {red TO rum} = documents with words in between "red" and
"rum"

 AND/OR/NOT and grouping: (red OR blue) AND NOT
yellow

 Prefix matching

 Proximity searches

 "See spot run"~20 = documents with words within a block of 20
words

Key-value store
Redis

 Open-source database
 First release: 2009

 Development sponsored by WMware

 OS: most POSIX systems like Linux, *BSD, OS X, …
 Win32-64 experimental version

 Language: ANSI C
 Clients for many languages: C, PHP, Java, Ruby, Perl, ...

 Not standard key-value features (rather a kind of document
database):
 Keys are binary safe = any binary sequence can be a key

 The stored value can be any object
 strings, hashes, lists, sets and sorted sets

 Can do range, diff, union, intersection, … operations
 Atomic operations

 Not usual, not required for key-value stores

http://redis.io/

multi-model

http://en.wikipedia.org/wiki/File:Redis_Logo.svg
http://en.wikipedia.org/wiki/File:Redis_Logo.svg
http://redis.io/

Key-value store
Redis

 In-Memory Data Set
 Good performance

 For datasets not larger than memory distribution

 Persistence: dumping the dataset to disk periodically / appending each
command to a log

 Pipelining
 Allows to send multiple commands to the server without waiting for the

replies + finally read the replies in a single step

 Publish/subscribe
 Published messages are sent into channels and subscribers express

interest in one or more channels

 e.g., one user subscribes to a channel
 e.g., subscribe warnings

another sends messages
 e.g., publish warnings "it’s over 9000!"

 Cache-like behavior
 Key can have assigned a time to live, then it is deleted

http://en.wikipedia.org/wiki/File:Redis_Logo.svg
http://en.wikipedia.org/wiki/File:Redis_Logo.svg

Redis Cache-like Behaviour
Example

> SET cookie:google hello

OK

> EXPIRE cookie:google 30

(integer) 1

> TTL cookie:google // time to live

(integer) 23

> GET cookie:google

"hello" // still some time to live

> TTL cookie:google

(integer) -1 // key has expired

> GET cookie:google

(nil) // and was deleted

Redis Data Types
Strings

 Binary safe = any binary sequence
 e.g., a JPEG image

 Max length: 512 MB

 Operations:
 Set/get the string value of a key: GET/SET, SETNX (set if not set

yet)

 String-operation: APPEND, STRLEN, GETRANGE (get a
substring), SETRANGE (change a substring)

 Integer-operation: INCR, INCRBY, DECR, DECRBY

 When the stored value can be interpreted as an integer

 Bit-operation: GETBIT, BITCOUNT, SETBIT

Redis Data Types
Strings – Example

> SET count 10

OK

> GET count

"10"

> INCR count

(integer) 11

> DECRBY count 10

(integer) 1

> DEL count

(integer) 1 // returns the number of keys removed

Redis Data Types
List

 Lists of strings, sorted by insertion order

 Possible to push new elements on the head (on the left)
or on the tail (on the right)

 A key is removed from the key space if a list operation
will empty the list (= value for the key)

 Max length: 232 – 1 elements
 4,294,967,295 = more than 4 billion of elements per list

 Accessing elements
 Very fast near the extremes of the list (head, tail)

 Slow accessing the middle of a very big list
 O(N) operation

Redis Data Types
List

 Operations:
 Add element(s) to the list:

 LPUSH (to the head)

 RPUSH (to the tail)

 LINSERT (inserts before or after a specified element)

 LPUSHX (push only if the list exists, do not create if not)

 Remove element(s): LPOP, RPOP, LREM (remove elements
specified by a value)

 LRANGE (get a range of elements), LLEN (get length), LINDEX
(get an element at index)

 BLPOP, BRPOP remove an element or block until one is
available
 Blocking version of LPOP/RPOP

Redis Data Types
List – Example

> LPUSH animals dog

(integer) 1 // number of elements in the list

> LPUSH animals cat

(integer) 2

> RPUSH animals horse

(integer) 3

> LRANGE animals 0 -1 // -1 = the end

1) "cat"

2) "dog"

3) "horse"

> RPOP animals

"horse"

> LLEN animals

(integer) 2

Redis Data Types
Set

 Unordered collection of non-repeating strings

 Possible to add, remove, and test for existence of
members in O(1)

 Max number of members: 232 – 1

 Operations:
 Add element: SADD, remove element: SREM

 Classical set operations: SISMEMBER, SDIFF, SUNION,
SINTER

 The result of a set operation can be stored at a specified key
(SDIFFSTORE, SINTERSTORE, ...)

 SCARD (element count), SMEMBER (get all elements)

 Operations with a random element: SPOP (remove and return
random element), SRANDMEMBER (get a random element)

 SMOVE (move element from one set to another)

Redis Data Types
Set – Example

> SADD friends:Lisa Anna

(integer) 1

> SADD friends:Dora Anna Lisa

(integer) 2

> SINTER friends:Lisa friends:Dora

1) "Anna"

> SUNION friends:Lisa friends:Dora

1) "Lisa"

2) "Anna"

> SISMEMBER friends:Lisa Dora

(integer) 0

> SREM friends:Dora Lisa

(integer) 1

Redis Data Types
Sorted Set

 Non-repeating collection of strings

 Every member is associated with a score
 Used in order to make the set ordered

 From the smallest to the greatest

 May have repeated values
 Then lexicographical order

 Possible to add, remove, or update elements in O(log N)

 Operations:
 Add element(s): ZADD, remove element(s): ZREM, increment the score

of a member: ZINCRBY

 Number of elements in a set: ZCARD

 Elements with a score in a specified range: ZCOUNT (count),
ZRANGEBYSCORE (get the elements)

 Set operations (store result at a specified key): ZINTERSTORE,
ZUNIONSTORE , …

Redis Data Types
Sorted Set – Example

> ZADD articles 1 Anna 2 John 5 Tom

(integer 3)

> ZCARD articles

(integer) 3

> ZCOUNT articles 3 10 // members with score 3-10

(integer) 1

> ZINCRBY articles 1 John

"3" // returns new John's score

> ZRANGE articles 0 -1 // outputs all members

1) "Anna" // sorted according score

2) "John"

3) "Tom"

Redis Data Types
Hash

 Maps between string fields and string values

 Max number of field-value pairs: 232 – 1

 Optimal data type to represent objects
 e.g., a user with fields name, surname, age, …

 Operations:
 HSET key field value (set a value to the field of a specified key),

HMSET (set multiple fields)

 HGET (get the value of a hash field), HMGET, HGETALL (get all
fields and values in a hash)

 HKEYS (get all fields), HVALS (get all values)

 HDEL (delete one or more hash fields), HEXISTS, HLEN
(number of fields in a hash)

Redis Data Types
Hash – Example

> HSET users:sara id 3

(integer) 1

> HGET users:sara id

"3"

> HMSET users:sara login sara group students

OK

> HMGET users:sara login id

1) "sara"

2) "3"

> HDEL users:sara group

(integer) 1

> HGETALL users:sara

1) "id"

2) "3"

3) "login"

4) "sara"

More on

Internals

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png

Key-value store
Transactions in Riak

 Not ACID, but BASE (Basically Available, Soft state, Eventually consistent)

 Uses the concept of quorums
 N = replication factor

 Default N = 3

 Data must be written at least at W nodes

 Data must be found at least at R nodes

 Values W and R:
 Can be set by the user for every single operation

 all / one / quorum / default / an integer value

 Example:
 A Riak cluster with N = 5, W = 3

 Write is reported as successful reported as a success

on > 3 nodes

 Cluster can tolerate N – W = 2 nodes being down for write operations

 dw = durable write
 More reliable write, not just "promised" that started

 rw = for deletes (read and delete, not just delete eventually inconsistent
value)

W > N/2

R + W > N

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png

Key-value store
Clustering in Riak

 No master node
 Each node is fully capable of serving any client request

 Uses consistent hashing to distribute data around the
cluster
 Minimizes reshuffling of keys when a hash-table data structure is

rebalanced

 Slots are added/removed

 Hash function maps the keys to a circle

 Each node in the cluster is responsible for an interval of hashes
(slot) in the circle

 Only k/n keys need to be remapped on average

 k = number of keys

 n = number of intervals (slots)

instead of almost all in most other hashing types

http://michaelnielsen.org/blog/wp-content/uploads/2009/06/consistent_hashing_3.PNG
http://michaelnielsen.org/blog/wp-content/uploads/2009/06/consistent_hashing_3.PNG

Key-value store
Clustering in Riak

 Center of any cluster: 160-bit integer space (Riak ring) which is
divided into equally-sized partitions

 Physical nodes run virtual nodes (vnodes)
 vnode is responsible for storing a separate portion of the keys

 They solve the problem of changing length of intervals

 Each physical node in the cluster is responsible for:

1/(number of physical nodes)

of the ring

 Number of vnodes on each node:
(number of partitions)/(number of physical nodes)

 Nodes can be added and removed from the cluster dynamically
 Riak will redistribute the data accordingly

 Example:
 A ring with 32 partitions

 4 physical nodes

 8 vnodes per node

bucket key

physical nodes

Key-value store
Replication in Riak

 Setting called N value
 Default: N=3

 Riak objects inherit the N value from their bucket

Key-value store
Replication in Riak

 Riak’s key feature: high
availability

 Hinted handoff
1. Node failure

2. Neighboring nodes
temporarily take over
storage operations

3. When the failed node
returns, the updates
received by the
neighboring nodes are
handed off to it

Key-value store
Sharing information in Riak

 Gossip protocol
 Motivation: robust spread of information when people gossip

 To share and communicate ring state and bucket properties
around the cluster

 Gossiping = sending an information to a randomly selected node

 According to the acquired information it updates its knowledge
about the cluster

 Each node „gossips":

 Whenever it changes its claim on the ring

 Announces its change

 Periodically sends its current view of the ring state

 For the case a node missed previous updates

Key-value store
Riak Request Anatomy

 Each node can be a coordinating vnode = node
responsible for a request
1. Finds the vnode for the key according to hash

2. Finds vnodes where other replicas are stored – next N-1 nodes

3. Sends a request to all vnodes

4. Waits until enough requests

returned the data

 To fulfill the read/write quorum

5. Returns the result to the client

Key-value store
Riak Vector Clocks

 Problem:
 Any node is able to receive any request

 Not all nodes need to participate in each request

We need to know which version of a value is current

 When a value is stored in Riak, it is tagged with a vector
clock
 A part of object’s header

 Provide a partial ordering of events

 For each update it is updated to determine:
 Whether one object is a direct descendant of the other

 Whether the objects are direct descendants of a common parent

 Whether the objects are unrelated in recent heritage

a85hYGBgzGDKBVIcR4M2cgczH7HPYEpkzGNlsP/VfYYvCwA=

non human

readable

Key-value store
Riak Siblings

 Siblings = multiple objects in a single key
 To have different values on different nodes

 Allowed by allow_mult = true setting of a bucket

 Siblings of objects are created in case of:
 Concurrent writes – two writes occur simultaneously from

two clients

 Stale vector clock – write from a client with an old vector
clock value
 It was changed in the mean time by another node

 Missing vector clock – write without a vector clock

 When retrieving an object we can:
 Retrieve just the list of siblings (their V-tags = IDs)

 Retrieve all siblings

 Resolve the inconsistency
 When allow_mult = false Riak resolves internally

 timestamp-based, last-write-wins (using vector clocks), …

Less

probable,

but can

occur

Key-value store
Riak Enterprise

 Commercial extension of Riak

 Adds support for:
 Multi-datacenter replication

 Using more clusters and replication between them

 Real-time replication – incremental synchronization

 Full-sync replication – entire data set is synchronized

 SNMP (Simple Network Management Protocol) monitoring
 A built-in SNMP server

 Allows an external system to query the Riak node for statistics
 E.g., average get / put times, number of puts / gets…

 JMX (Java Management Extensions) monitoring
 Java technology for managing and monitoring applications

 Resources represented as objects

 Classes can be dynamically loaded and instantiated

More on

Internals

http://en.wikipedia.org/wiki/File:Redis_Logo.svg
http://en.wikipedia.org/wiki/File:Redis_Logo.svg

Key-value store
Transactions in Redis

 Every command is atomic

 Support for transactions when using multiple commands
 The commands will be executed in order

 The commands will be executed as a single atomic operation

 Either all or none of the commands in the transaction will be
executed

> MULTI

OK

> INCR foo

QUEUED

> INCR bar

QUEUED

> EXEC

1) (integer) 1

2) (integer) 1

queue the commands

execute the queued commands

http://en.wikipedia.org/wiki/File:Redis_Logo.svg
http://en.wikipedia.org/wiki/File:Redis_Logo.svg

Key-value store
Transactions in Redis

 Two kinds of command errors:
 A command may fail to be queued

 An error before EXEC is called

 e.g., command may be syntactically wrong, out of memory
condition, …

 Otherwise the command returns QUEUED

 A command may fail after EXEC is called
 e.g., an operation against a key with the wrong value (e.g.,

calling a list operation against a string value)

 Even when a command fails, all the other
commands in the queue are processed
 No roll-back

 To speed up processing

Key-value store
Transactions in Redis

> MULTI

OK

> SET a 3

QUEUED

> LPOP a

QUEUED

> SET a 4

QUEUED

> EXEC

1) OK

2) WRONGTYPE Operation

against a key holding the

wrong kind of value

3) OK

> GET a

"4"

> SET foo 1

OK

> MULTI

OK

> INCR foo

QUEUED

> DISCARD

OK

> GET foo

"1"

Key-value store
Redis Replication

 Master-slave replication
 A master can have multiple slaves

 A slave can serve as master for other slaves
 Can form a graph

 Slaves are able to automatically reconnect when the master-
slave link goes down for some reason

 Replication is non-blocking on the master side
 Master continues to serve queries when slaves perform

synchronization

 Replication is non-blocking on the slave side
 While the slave is performing synchronization, it can reply to

queries using the old version of the data
 Optionally can block if required

 There is a moment where the old dataset must be deleted and
the new one must be loaded = blocking

Key-value store
Redis Synchronization of Replicas

1. Upon (re-)connection to master slave sends SYNC command

2. The master starts background saving
 Buffers all new commands received that modify the dataset

3. When the background saving is complete, the master transfers the
database file to the slave

4. Slave saves it on disk, and then loads it into memory

5. Master sends to the slave also the buffered commands

 Since Redis 2.8 partial re-synchronization:
 No full re-synchronization

 In-memory backlog of the replication stream on master side

 After re-connecting:
 Master and slave agree on master ID and replication offset

 Replication starts from the offset if the ID is the same

Full (re-)

synchronization

Key-value store
Redis Sharding

 Redis Cluster (since version 3.1)
 Does not use consistent hashing
 Every key is conceptually part of a hash slot

 16384 hash slots in Redis Cluster
 CRC16 of the key modulo 16384 = its hash slot

 Every master node is responsible for a subset of the hash slots
 => limited number of master nodes

 Example:
 3 nodes:

 Node A contains hash slots from 0 to 5500
 Node B contains hash slots from 5501 to 11000
 Node C contains hash slots from 11001 to 16383

 Add a new node D = move some hash slots from nodes A, B, C to D
 Remove node A = move the hash slots served by A to B and C

 Moving hash slots from a node to another does not require
stopping operations

Key-value store
Redis High-Availability – Redis Sentinel

 Redis Sentinel – a system designed to help managing
Redis instances
 Monitoring: checks if master and slave instances are working

 Notification: notifies the system via an API if not

 Automatic failover: If a master is not working as expected,
Sentinel can promote a slave to master

 Other slaves are reconfigured to use the new master

 Applications using the server are informed about the new address

 Distributed system
 Multiple processes run in the infrastructure

 Use agreement protocols in order to understand if a master is
down and to perform the failover

Key-value store
Redis High-Availability – Redis Sentinel Settings

sentinel monitor mymaster 127.0.0.1 6379 2

// monitor this server, two sentinels must agree on

// failure

sentinel down-after-milliseconds mymaster 60000

// when a server is considered as failed

sentinel failover-timeout mymaster 900000

// maximum time for failover (to recognize its failure)

sentinel can-failover mymaster yes

// can failover be done?

sentinel parallel-syncs mymaster 1

// number of slaves that can be reconfigured to use

// the new master after a failover at the same time

References

 Eric Redmond – Jim R. Wilson: Seven Databases in
Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence

 Karl Seguin: The Little Redis Book
http://openmymind.net/2012/1/23/The-Little-Redis-Book/

 Eric Redmond: A Little Riak Book
http://littleriakbook.com/

http://openmymind.net/2012/1/23/The-Little-Redis-Book/
http://littleriakbook.com/

