
Manta C# Scanner
MANTACS

Authors: Bc. Tereza Storzerová, Bc. Lukáš Riedel,
Bc. Jan Joneš, Bc. Jakub Sýkora

Supervisor: RNDr. Pavel Parízek, Ph.D.

Consultant: RNDr. Lukáš Hermann (Manta Tools, s.r.o.)

Faculty of Mathematics and Physics
Charles University

Contents

1 Introduction 2
1.1 Data Lineage . 2
1.2 MANTA Flow . 3
1.3 Architecture Outline . 4
1.4 Goals . 4

2 Symbolic Analysis 5
2.1 Analysis Sensitivity . 5
2.2 Analyses Characteristics . 5
2.3 Intermediate Representation . 5
2.4 Algorithm Outline . 6
2.5 Analysis of Specific Methods . 6
2.6 Alias Analysis . 6

3 Functional Requirements 7
3.1 Symbolic Analysis . 7
3.2 Inputs . 8
3.3 Outputs . 9

4 Nonfunctional Requirements 12
4.1 Integration . 12
4.2 Extensibility . 12
4.3 Fault Tolerance . 12
4.4 Data Integrity . 13
4.5 Testing . 13
4.6 Continous Integration . 14
4.7 Code Quality . 14
4.8 Development Tools . 14

5 Architecture 15
5.1 Connector . 15
5.2 Dataflow Generator . 18

6 Project Execution 19
6.1 Organization . 19
6.2 Roles in Team . 19
6.3 Continuous Integration . 20
6.4 Future Work . 20

Bibliography 21

1

1. Introduction
In this project we aim to develop a tool for static analysis of dataflow between

C# programs and systems such as databases in the context of data lineage. This
chapter explains our motivation for the development of this tool and provides
a brief introduction into the data lineage.

1.1 Data Lineage
Nowadays the data volume of many companies (for example in the banking or

insurance sector) is very large and keeps growing. This can cause several problems
for these companies, as the full control over the data could be impossible. Our
motivation is to provide the company a view of data lineage that tracks the flow
and transformation of data across their systems. In other words, the data lineage
gives an answer to the question of which outputs can be possibly affected by
which inputs. The next sections describe specific applications of the data lineage.

Privacy

The strict requirements come directly from customers or a government that
wants to protect customers. As an example, a company should be able to clear
all customer data and get into a state as if it never knew the customer. Even
this seemingly simple task can cause problems if it is difficult to trace how the
customer data could be propagated.

Regulations

A regulated pharmaceutical business needs to provide audit information about
utilized data due to transparency requirements, medical records protection and
manufacturing of drugs. Their data stored in database systems are used in com-
puting in cloud environment with services and deployed applications. The flow of
data between these systems, i.e. data lineage, needs to be analyzed as absolute
control over the data is required.

Data Management

It is also important for the enterprise itself to be able to see how their data
changes are propagated across the system. For example, when a new restriction
on some values is done, it should affect all locations where these values may have
been stored. It is also practical to know exactly how the program affects the
databases or file system in case of a problem (error, exception etc.). The need of
such knowledge can be demonstrated on the following examples:

• Reducing data growth in case of mergers and acquisitions of multiple com-
panies. Each of the companies has usually its own data warehouse with lots
of valuable data, so it is necessary to consolidate it.

• Selection of stable data to be kept on-site in data warehouses as an alter-
native to expensive cloud migrations.

2

Tools for Data Lineage
Necessary parts of dataflow, such as database systems, can be analyzed by

many automated tools that provide information about system’s data sources,
transformations and sinks. Functions deployed in cloud computing and business
applications, both written in high-level programming languages, are often ana-
lyzed manually. Their possible automated analysis similar to one of the database
systems would be beneficial. Developing a tool that performs this analysis is
exactly the topic of this software project.

1.2 MANTA Flow
One of the data lineage solutions is a platform called MANTA Flow [1]. For

each supported technology in MANTA Flow, there is a scanner that performs an
analysis producing dataflow information – data transformations and propagation
from data sources to their sinks. Such sinks and sources can be database tables
or specific files. The output of MANTA Flow is a data lineage graph where edges
represent the dataflow and nodes represent sinks and sources. Figure 1.1 contains
a simplified MANTA Flow graph, which represents the following scenario: The
program queries user data from a database, modifies them and creates a log file of
such activity. The scanner analyzes the dataflow in the program and adds to the
graph a directed edge from the node representing a particular database column to
the node representing the log file contents. Such connected nodes are then a part
of subgraphs representing entities, such as a program or database connection with
schema. MANTA Flow then visualizes the nodes and edges, depending on their
types.

C# program

 Namespace:

 Management.Users.Persistence

Class: UsersStorage

Method: LoadUsers

SQL Statement

Column: User

 Namespace:

Management.Users.Backend

Class: UsersService

Method: CreateUsersLog

Stream output

Oracle database

Database connection

Database name; schema

Table: Users

Query: SELECT User FROM Users

File: UsersLog.csv

Figure 1.1: Example of a dataflow visualization

3

In the case of high-level programming languages, MANTA Flow offers a Java
scanner. Its dataflow analysis utilizes symbolic analysis designed by Parízek [2],
based on Java bytecode inspection. The main goal of this project is to extend the
set of available scanners in MANTA Flow by a new scanner for C# programs.
As the .NET platform uses CIL as intermediate code for the C# programming
language, similar to Java bytecode, the scanner will implement the already men-
tioned symbolic analysis. Main concepts of the analysis will be briefly explained
in the following chapter, as this particular analysis needs to be considered when
specifying both functional and nonfunctional requirements.

1.3 Architecture Outline
When specifying requirements, it is important to understand the high-level

architecture of the scanner. As the scanner is developed for MANTA, its archi-
tecture must follow the general scanner architecture that consists of two main
parts:

• Connector – runs a dataflow analysis of provided input program

• Dataflow generator – implemented in Java, adds connector analysis
results to the output graph of MANTA Flow

Connector is further divided into five modules, described in Section 5.1.

1.4 Goals
Based on the introduction, we can specify overall goals for the project:

1. Develop the C# scanner that will perform a static dataflow analysis of C#
programs:

(a) The analysis shall be based on the symbolic analysis described
in Chapter 2.

(b) The scanner shall be integrated into the MANTA Flow platform.

2. As the scanner is being developed for a commercial company, MANTA,
we shall meet its requirements for development practices and functionality
of the scanner.

In the next chapters we propose in further detail the specification of the C#
scanner, specify its both functional and nonfunctional requirements and show
a brief description of symbolic analysis.

4

2. Symbolic Analysis
Symbolic analysis is a method of programmatically analyzing the behavior

of computer programs with respect to their inputs and outputs, i.e., what data
transformations and propagation they perform.

The behavior of a given computer program can be analyzed either statically
or dynamically. Dynamic analysis executes the program with various inputs and
observes how the data are propagated. This kind of analysis requires lots of
test data (inputs) to be useful. Static analysis, on the other hand, inspects the
behavior of the program without actually executing it. In order to do that,
the program’s source code, machine code or intermediate representation can be
inspected. In MANTA Flow, all analysis is of the static kind, hence scanners for
languages with intermediate code representation perform static analysis, as well.
Symbolic analysis is a specific approach to static analysis.

2.1 Analysis Sensitivity
Automatically analyzing the dataflow in full detail of any given program is

computationally intractable [3]. Therefore, static analysis only aims to approx-
imate the behavior of a given program. Based on how much they approximate
their results, the analyses have different sensitivities (for example, with respect
to control flow or calling context) [4, 5].

2.2 Analyses Characteristics
There exist several characteristics describing the sensitivity of the static anal-

ysis. Path sensitive analyses process different control flow paths separately. Flow
sensitive analyses take into account the order of instructions in the code. (i.e.,
while flow insensitive analysis is only able to detect that a and b can point
to the same memory location, flow sensitive analysis can determine from which
statement this actually occurs.) Context sensitivity is the ability to distinguish
different calling contexts (i.e., a new analysis is performed for every distinct set
of actual method parameters and for different call sites). The symbolic analysis
is flow and partially context sensitive.

2.3 Intermediate Representation
As is common for many other static analyses, symbolic analysis works with

an intermediate representation of inspected source code. Symbolic analysis uses
symbolic representation of program variables and their values. In order to utilize
symbolic analysis for C# programs, feasible framework for CIL code inspection
must be used.

CIL works with a simple stack of values. For example, if a program wants to
work with the expression array[i], its CIL code must load reference to array
to the stack, get element at position i (which pops the array reference, finds

5

reference to its i-th element and pushes that to the stack) and finally dereference
the top of the stack to get the actual value of the i-th element.

2.4 Algorithm Outline
At start, the worklist (queue of methods to be processed) is created containing

all methods reachable from the entrypoint methods. Generally, a method is
processed in flow sensitive manner by visiting its symbolic expressions for each
execution branch, noticing their effects on analysis (such as value loads and stores)
and then merging branches into one analysis result.

As the analysis is context sensitive, several invocation contexts for each method
exist. Each invocation context specifies method arguments. In each iteration,
a method from the head of the worklist is processed (i.e., its summary is updat-
ed). If effects of the method actually change, all callers and callees of that method
are added to the worklist along with the current invocation context, because their
summaries can be potentially affected by the just computed effects and need to
be recomputed. When the worklist is empty, the algorithm terminates.

2.5 Analysis of Specific Methods
Symbolic analysis needs to handle some methods specially, without inspecting

their symbolic representation of code.
One group of special methods are framework and library methods, as dataflow

effects of such method are not based on CIL instructions processing, but on
method semantics instead, explicitly encoded in the scanner. One example could
be a sequence of methods creating prepared statement for a database query.
In context of scanner, special plugin for analysis of specific framework can be
developed. Such plugin will intercept analysis of framework’s method calls and
provide its own semantics of method’s dataflow.

When the analysis is implemented for the C# programming language, it must
deal with methods in .NET which implement low-level functionality. Many of such
CIL methods can be skipped, so that the analysis does not go to the lowest levels
which would be computationally demanding. Some other CIL methods can be
handled specially because analyzing them generally could give imprecise results.
Some of the methods are written in C and compiled to machine code that can’t
be processed by symbolic analysis.

2.6 Alias Analysis
Symbolic expressions can be aliased meaning that two variables can reference

the same object. Symbolic analysis needs to know about these aliases to correctly
compute the flow effects on the given piece of code. Symbolic analysis also needs
to handle virtual method calls, possibly processing all of the particular virtual
methods implementations. Hence, part of the project needs to contain an infras-
tructure for providing enumeration over several implementations of an interface
or an abstract method.

6

3. Functional Requirements
The C# scanner is developed as one of the scanners for MANTA Flow plat-

form, as mentioned in the Chapter 1. The following section describes require-
ments for the C# scanner as a part of MANTA Flow, based on the supported
technologies in MANTA Flow.

3.1 Symbolic Analysis
As already mentioned in the description of symbolic analysis in Chapter 2,

analysis of frameworks and libraries will be provided by plugins. MANTA Flow
works with data inputs and outputs. Hence, we need to process semantics of I/O
operations and database method calls.

Databases Support
There are several third-party libraries for manipulation with databases. The

C# scanner will support ADO .NET [6], which can be considered as the .NET
equivalent of JDBC [7], supported by the Java scanner. The plugin for ADO. NET
only needs to form queries because their processing is already implemented by
other parts of MANTA Flow. We have selected ADO. NET as it is a framework
used by one of MANTA’s customers.

Constants Analysis
With the analysis of database dataflows comes the requirement for processing

string and integer constants. The scanner must know the structure and content of
dynamically constructed SQL queries. For example, it is common for programs to
concatenate multiple strings into a single SQL query or to substitute parameters
in SQL query templates with their actual values. Similarly, we need to analyze
numerical values as precisely as possible, since they are used to denote columns
and parameters in SQL queries. In particular, we should be able to recognize
numeric constants that are written directly in the code. On the other hand,
precisely analyzing all numerical operations would be computationally unfeasible.

I/O Support
Common input and output methods used in C# programs will be support-

ed, such as methods of the classes Console, StreamReader, StreamWriter,
FileStream, and File.

7

Unsupported Features of the Language
Some C# features are too difficult to analyze and they will not be supported

at all or only in a limited form. Among such features are:

• reflection and dynamic code generation,

• dynamic language runtime (i.e., dynamic variables),

• multi-threading and parallelism,

• exception handling.

Supported Features of the Language
On the other hand, to correctly analyze data lineage, the C# scanner needs

to support:

• arrays and other basic collections (lists, dictionaries),

• string and numeric constants, including basic manipulations with them,

• inheritance and generic types with no constrained generic parameter,

• all control flow statements (if-then-else, loops, method calls).

3.2 Inputs
Input data are passed into the scanner together with a configuration file. The

symbolic analysis needs to have information about:

• Entry point methods. The entry point is considered to be any method
where the program execution should start, it does not have to be Main
necessarily, it can also be a controller’s method as route handler.

• Code to be analyzed. This can include standalone .cs files, .csproj
projects and compiled assemblies (.exe,.dll files)

• Excluded namespaces. Some namespaces and classes can be excluded
when it is not needed to include them into the analysis (for example the
loggers). It is supposed that exclusions will be implemented using regular
expressions, so just a part of namespace can be excluded too.

Note that analysis accepts any combination of file types to be analyzed,
the scanner will load them all. Source code loading is resolved by compiling
the sources into CIL assemblies at runtime. Therefore, all dependencies must be
specified, otherwise the code would not be compiled and the scanner might reject
such input. This can include even referencing core libraries of .NET runtimes.
Handling any compilation errors is out of scope of the project, that means if there
is any .cs or .csproj file at input that cannot be compiled for some reason, the
scanner will not continue with the analysis.

8

3.3 Outputs
The description of MANTA Flow in Section 1.2 implies that the C# scanner

implementation needs to map its dataflow sources and sinks to already defined
nodes in MANTA Flow and also needs to define its own nodes that can be recog-
nized and visualized by MANTA Flow. The content of the nodes representing the
scanner analysis results is determined by business requirements, deciding which
analysis results information can be omitted from the MANTA Flow output graph.
Based on these requirements and symbolic analysis capabilities with supported
plugins, the following dataflow types can be visualized:

• Database queries (SQL)

• File I/O

• Entrypoints

Now we describe the structure of the analysis output and the mentioned
dataflow types in further detail.

C# Program
The symbolic analysis of C# program will group its dataflow sink and sources

as one subgraph that contains several program locations. A program location
consists of:

• Namespace name

• Class name

• Method signature

• Dataflow context information

The dataflow context information helps to distinguish location of analysis re-
sults by including information such as identification of calling context of a method.
A program location is associated with the dataflow sources and sinks taking place
at the location. Examples of sources and sinks will be described in the remaining
description of the analysis outputs.

9

Databases
For each detected database statement execution, the scanner will associate the

SQL statement node with the statement’s program location, which is connected
with:

• Nodes representing statement parameters

• Nodes representing table column nodes

Both column and parameter nodes are then connected to their data sources
or sinks. In order to interpret the executed statement, MANTA Flow utilizes
a service which also adds subgraph of the analysed statement directly into the
output graph. Such subgraph contains query with subtrees of tables affected by
utilized parameters or columns in the result set. Each query is also associated
with the specific database connection with its location in the graph.

Consider the following ADO .NET code snippet, which contains a simple
SELECT statement:

1 string queryString = "SELECT UserName FROM management.users WHERE Age > @age";
2 /* Assume that the connection is already created. */
3 SqlCommand cmd = new SqlCommand(queryString, connection);
4 command.Parameters.AddWithValue("@age", 20);
5

6 SqlDataReader reader = command.ExecuteReader();
7 while (reader.Read()) {
8 Console.WriteLine(reader[0]);
9 }

Introduced snippet should be analyzed and presented in MANTA Flow graph
in a structure similar to one shown in Figure 3.1.

C# program

Namespace:
Management.Users.Persistence

Class: UsersStorage
Method: LoadUsers

SQL Statement

Column: User

Database provider type
Database connection

Database name; schema

Query: SELECT UserName FROM
management.users Users Age > (?)

Table: Users

ParameterIndex:
1

ColumnName:
UserName

Param: 1

Entrypoint

Console output

Figure 3.1: Example of database query dataflow output

10

Entrypoints
The scanner output will also show dataflows where sinks and sources are

common program input and output constructs such as entry method arguments
or console I/O – we call them entrypoints.

Following the dataflow example in the code snippet of the previous section,
the output graph would contain a node representing the entrypoint dataflow,
where the sink is the call of Console.WriteLine. An oriented edge from query
result column then leads to the entrypoint node as the dataflow.

The following list provides examples of supported entrypoints:

• Console I/O - methods such as Console.WriteLine and Console.ReadLine

• Inputs - method arguments, instance fields and static fields

• Outputs - return values

File I/O
The scanner will contain a plugin for analyzing file input and output streams,

as described in Section 3.1. This specific type of dataflow source and sinks has
a unique visualization in the output graphs. Each file I/O node will contain in-
formation whether the node represents a dataflow sink equal to the file output
stream or a dataflow source equal to the file input stream. In order to provide
detailed information about writes and reads from CSV files, as a business require-
ment, the node or its subtrees can possibly contain detailed information about
affected CSV columns.

11

4. Nonfunctional Requirements
The following chapter contains specification of non-functional requirements

impacting the scanner execution, architecture and development process.

4.1 Integration
As described in Section 1.2, the scanner will be integrated into the MANTA

Flow platform. This integration will be based on the already described output
graph of MANTA Flow and also on the CLI tool, which will be described in this
chapter.

Manta Dataflow CLI
The architecture of the MANTA Flow platform is decomposed into the server

and client parts. Manta dataflow CLI is a tool that runs scanner analyses in
separated units called scenarios. For each scanner, the scenario in the CLI tool
configures the scanner environment and prepares its prerequisities. The scanner
scenario has a step that adds new nodes to the MANTA Flow graph as its analysis
result. The CLI tool is implemented in Java and loads configurations via Spring
boot XML files that contain beans that register scanner output classes. The
classes inherit from base classes that are used as a representation of scenarios in
the CLI tool algorithm. The implementation of the C# scanner needs to follow
these integration rules in order to be run from the MANTA dataflow CLI, hence
part of the scanner must be implemented in Java.

4.2 Extensibility
Initially, the C# scanner cannot support all commonly used .NET libraries,

and therefore will only support ADO .NET and System.IO as described in Chap-
ter 3. The scanner needs to be extensible enough, so that support for other
libraries can be added in the future. Section 6.4 describes possible extensions
that could be implemented out of the scope of this project.

4.3 Fault Tolerance
The scanner shall recover from exceptional states with minimal impact on

the analysis results and log such states at the warning level. Expected impacts
and handling of each error shall be documented. It is expected by the MANTA
Flow platform that execution will not halt due to any error. We provide some
examples, how fault cases should be handled in certain situation, as a general
guideline:

12

• Method processing – If there is a method call in the analyzed program that
the scanner is unable to process, it skips such method and resolves the
method as an identity – a method that has no instructions in its body.

• Column mapping – when a SELECT statement which selects several columns
is analyzed, the dataflow target is matched by the column name. Due to
imprecise analysis, the column name could be analyzed incorrectly. In such
case, if the column name matches no column of a table, all table columns
are mapped to the dataflow target.

4.4 Data Integrity
Design of data entities that capture analysis results shall be type safe – the

results shall be covered by an enumeration of expected states in order to assure
logical integrity. The context under which the scanner operates shall be always
well-defined. In order to conform to expected behavior mentioned in Section
4.3, incomplete analysis results shall be propagated into the resulting MANTA
Flow graph, and the design of data entities shall also contain enumeration over
incomplete states.

4.5 Testing
We plan to develop tests of two kinds: unit tests and integration tests.

Unit Testing
Each project shall be covered by unit tests. Unit testing should be primarily

used to discover bugs during execution of the code parts, but should also help
to design code by utilizing tools for mocking and should partially work as code
documentation.

Integration Testing
Integration tests shall exist for testing of the entire scanner and its modules.

Generally, there are several approaches to testing the integration of multiple
modules of the system. We aim to use bottom-up testing, since it suits our
architecture well. At first, the lowest level module is tested. Then, if all the tests
pass, the module is used to test the next level module until the module at the top
of the hierarchy is tested. For this purpose, several test scenarios will be created.

The test data that we aim to use are called test targets. Test targets are small
C# programs that should test some functionality of the scanner, e.g., querying the
database. For convenience, a test framework shall be created. Such a framework
should provide an interface for

• gathering test targets in the file system along with their expected results,

• passing the gathered data into test methods.

13

Having such a framework has multiple benefits, one of them being a fact that
a new integration test can be added without the need of modifying the project
with tests, so that testing is automated. Additionally, the framework should
speed-up the process of finding bugs in production on the customer side, since
bottom-up testing can help to find the bug very easily, and customer data can be
treated in the same way as test targets.

4.6 Continous Integration
In order to make the development process easier, a server with automated

builds shall be used. Builds shall be triggered for each update of the solution
in the central git repository. The team will follow the GitFlow [8] git branching
model. That means that individual parts of the code will be developed in the
feature branches and, when complete, they will be merged into the develop branch.
The master branch is prepared for deployement of release versions. The builds
for each branch type will contain different steps:

• Feature branches and pull requests should build the solution, run unit tests
and verify code quality.

• Builds on the develop branch shall have the same steps as builds on fea-
ture branches and will additionally include time-demanding steps such as
integration tests.

4.7 Code Quality
The project team shall utilize a tool that allows code reviews and approvals of

included changes to the development branch from team members. The reviewer
should be able to see quite easily whether a specific build has passed or not.

The team shall utilize a code quality analyzer that detects language specific
programming errors.

4.8 Development Tools
The project team shall utilize development tools given or approved by MAN-

TA, that conforms requirements related to code quality and continuous integra-
tion. The team will then provide feedback on the configuration and usage of the
utilized development tools, which can be then used by other teams in MANTA
in the future.

14

5. Architecture
The architecture of the C# Scanner is separated into two main parts

– Connector and Dataflow generator. The high-level architecture is visual-
ized in Figure 5.1. The Dataflow generator adds nodes to the MANTA Flow
output graph as described in Section 1.2. The Connector processes the scanner
input and performs symbolic analysis, that provides the analysis results to the
Dataflow generator. Besides these two parts, an integration project for the
MANTA Flow CLI with configurations must be developed as mentioned in Sec-
tion 4.1. This separation follows the general architecture of the MANTA Flow
scanners and suits additional problems present in the C# scanner, which will be
discussed further in this chapter. Let us describe two main parts in further detail.

MANTA Flow graphDataflow generatorConnectorInputs

C# Scanner

Figure 5.1: High-level architecture of the C# Scanner

5.1 Connector
The Connector receives the input C# program and performs symbolic analy-

sis. It consists of the Extractor and Reader components, as shown in Figure 5.2.
The Extractor creates a configuration based on the input program – this includes
finding entry points, creating scope and common exclusions. The Reader then
processes the input program and the extracted configuration. It consists of five
smaller components. The Intermediate code simulator performs a symbolic
interpretation of the CIL instructions of a method, based on information from the
code provided by the Intermediate code infrastructure. With plugins and
both infrastructure modules, the Symbolic analysis module then performs the
actual dataflow analysis. Finally, the Analysis results transformer creates
a graph of analysis results, which is the final product of the Connector. The
following sections describe the internal parts in further detail.

Connector

Extractor

Intermediate code
infrastructure

Intermediate code
simulator

Symbolic analysis

Analysis results transformer

Reader

Plugins

Figure 5.2: High-level architecture of Connector

15

Extractor
The Extractor shall receive inputs as described in Section 3.2 and transform

them into input structures used by Reader. Extractor run is not mandatory as it
is only included to simplify the configuration process. Although the configuration
can be passed into Reader manually, it is strongly recommended to let Extractor
create the configuration. When Connector is integrated into MANTA Flow, the
Extractor is always utilized.

Intermediate Code Infrastructure
Intermediate code infrastructure processes assemblies and provides in-

formation about program structure for the purpose of symbolic analysis:

• Class Hierarchy - Used to get, e.g., all implementing classes (structures,
interfaces) of given interface or all derived classes of a given class.

• Call Graph - Given an entry point method, we must be able to get all
possible method calls reachable from the entry point.

To deal with CIL code, the module internally uses the Mono.Cecil framework
[9], which was chosen as the most suitable option (compared with Roslyn, for
example). One of the goals of this module is to provide wrapper classes for
Mono.Cecil, as well to extend functionality of Mono.Cecil. This can include:

• Caching data about the intermediate code, so that these caches are inside
wrappers and the developer does not have to think about whether some
data are cached or not.

• Hiding unnecessary functionality of Mono.Cecil, as it might be complex and
poorly documented, to prevent confusion.

Additionally, this module should simplify usage of different wrapped third party
libraries, if needed, so that the replacement has no impact on other modules.

Intermediate Code Simulator
Intermediate code simulator is a layer between the stack machine code of

the analyzed program and the Symbolic analysis. Its purpose is to provide an
abstraction of the code (information about CIL code metadata and instructions)
and make the analysis easier to implement.

Symbolic Expressions

As the C# scanner is processing the stack machine code, it is easier to cre-
ate the simulator layer, because it only has to work with a stack of symbolic
expressions – an abstraction created over the CIL instructions. Imagine having
two numeric expressions on the stack and the simulator just approaching the add
instruction. The only thing it does is that it pops two expressions from the stack,
evaluates addition upon them and pushes the result back onto the stack. These
expressions should be passed into the symbolic analysis. Intermediate code

16

simulator provides such information to Symbolic analysis only when some
important action from the analysis point of the view is happening. The impor-
tant actions are, for example, method call and load or store of some variable.

Symbolic Analysis
As the first step of the Symbolic Analysis, it collects information about

aliases among expressions in the analyzed program. Basically, the analysis needs
to know which expressions can be aliases of each other in order to share dataflow
information among them.

Symbolic analysis uses Intermediate code simulator to simulate the ex-
ecution of a given CIL code in methods. This simulation works with symbolic
expressions instead of the concrete variable stack maintained by .NET runtime.
The analysis itself is implemented using the worklist algorithm described in Sec-
tion 2.4.

During its execution, the analysis computes the side effects and dataflow in-
formation for each expression used inside the analyzed method. It also has to
propagate dataflow information among aliased expressions and across method call
boundaries. Some methods will be handled externally by Plugins.

Plugins
Plugins handle the methods that are not resolved by Symbolic Analysis.

These are methods that the scanner does not want to analyze and methods that
are treated in a special way. In most cases, plugins provide a partial analysis of
methods from database frameworks (e.g. ADO. NET) that produce and consume
data. To analyze parts of methods bodies, the plugins may need to cooperate
with the Symbolic Analysis component.

In this project, we aim to design an interface which shall be general enough
to allow implementation of plugin for any library or framework. Plugins for I/O
and ADO. NET shall be developed within this project, while additional plugins
are subject of the future work (based on customer’s requirements).

Analysis Results Transformer
After the work of Symbolic Analysis is completed, the Transformer re-

trieves the dataflow information of the methods and their invocation contexts.
Based on these information, it creates a graph structure whose nodes represent
program points (actions) and edges accurately represent the dataflows between
them.

17

5.2 Dataflow Generator
Dataflow generator receives the analysis results graph from Connector and

transforms it into the output graph of MANTA Flow with the node types de-
scribed in Section 3.3. Dataflow generator puts results of Connector into the
context of data lineage of an entire technology stack with an option to resolve
some result dependencies as described in the following text.

Interoperability
Dataflow generator must be implemented in Java as the Scanner output is

expected to be received from an extensions of base classes of MANTA Flow CLI,
as mentioned in Section 4.1. Since Connector will be implemented in C#, in-
teraction between those two components must be solved. The interoperability is
implemented by using remote procedure calls - gRPC [10] with Protocol Buffers
messages [11]. This solution impose less difficulties during development as devel-
opers work only with generated code for both data transfer objects and remote
procedure calls. Protocol buffer message definition in .proto file works also as
canonical data model. Implementation of gRPC does not require any installations
on customer’s machines. As native .NET interoperoperability with Java should
be provided in future in one of .NET releases, each component is designed in way
which allows easy change of interoperability implementation as it is provided in
separate module.

Transformations
The transformation process between graphs also includes usage of services

provided by MANTA Flow which solves some dependencies of the analysis re-
sults. For example, database queries are linked to database connection by several
attributes. DataflowQueryService, used in multiple MANTA Scanners, resolves
the database connection and performs the query as it knows a schema based on
the connection. The service then creates the query as a part of the MANTA Flow
output graph and provides query results to the Dataflow generator in order to
connect C# program nodes and the query nodes.

18

6. Project Execution
This chapter specifies the organization of work on this project and provides

guidelines for the development process.

6.1 Organization
The project is conducted in close cooperation with the MANTA company

and therefore the work organization is based on the company guidelines. Weekly
status meetings take place, where work plan is reviewed and refined. Next to
those meetings, special meetings focused on the design and architecture of the C#
scanner take place. Important design and architecture decisions are documented
in Confluence pages [12]. The work is tracked and reported in JIRA system [13]
and the team communicates via Slack [14].

6.2 Roles in Team
The team consists of four members. Based on the described requirements and

architecture, the following roles are assigned to team members:

• Jakub Sýkora

– Development tools
– Development environment
– MANTA Flow integration
– Dataflow generator

• Lukáš Riedel

– Intermediate code infrastructure
– Intermediate code simulator
– Integration testing

• Jan Joneš

– Symbolic analysis
– Design of analysis plugins

• Tereza Storzerová

– Analysis results transformation
– Implementation of analysis plugins

Several interfaces have been already designed, so that each team member can
work independently of the others in a particular way.

19

6.3 Continuous Integration
Based on the development requirements defined in Section 4.8, the team re-

ceived the following tools:

• Jenkins server [15] for continuous integration

• Gitea [16], a locally hosted open-source git repository that allows to create
pull requests with code review comments as demanded by the code quality
requirements defined in Section 4.7

In the early stages of the project, integration between Jenkins and Gitea was
established via Gitea plugin [17] and multibranch pipelines plugin [18]. Each
commit and pull request carries information whether the build passed or failed.
This information is visible from Gitea and contains links to the build in Jenkins.

The integration is based on webhooks managed by mentioned plugins, where
the multibranch pipeline plugin manages mappings of Jenkins jobs to repository
branches. For each branch update such as pull request or commit, a build in
the mapped job is triggered. The content of the build is set via Jenkinsfile
stored in the branch, which enables to treat continous integration configuration
as a part of the repository and code. To enable easy configuration of a Jenkins
machine, several steps are run in Docker containers [19]. With Docker containers,
developers can easily run the build steps on their development machines. Based
on the continuous integration requirements defined in Section 4.6, the builds
involve the following steps:

• Feature branches and pull requests

1. Solution build (when warnings are produced, the build fails)
2. Unit tests run (when a test fails, the whole build fails)
3. Code quality checks with SonarLint [20] (when warnings from code

quality packages are produced, the whole build fails)

• Develop branch

1. Documentation validation (report on missing or invalid documentation
generated by)

2. Integration tests run (when a test fails, the whole build fails)

6.4 Future Work
As mentioned in Section 4.2, the C# scanner supports analysis extensions

for .NET libraries and frameworks. Several analysis plugins for common .NET
frameworks and libraries such as ASP .NET, Entity Framework or Dapper could
be developed in future. Next to the common frameworks and libraries, codebases
of several MANTA customers also involve specific libraries that require develop-
ment of respective extensions.

20

Bibliography
[1] MANTA Flow.

https://getmanta.com/scanners-and-integrations/tech-summary/.

[2] Pavel Parízek. Hybrid analysis for partial order reduction of programs with
arrays. In Barbara Jobstmann and K. Rustan M. Leino, editors, Verifica-
tion, Model Checking, and Abstract Interpretation, pages 291–310, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[3] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. 42:230–265, 1936.

[4] Pavel Parízek. BUBEN: Automated Library Abstractions Enabling Scalable
Bug Detection for Large Programs with I/O and Complex Environment, In
Proceedings of ATVA 2019, LNCS 11781.

[5] Richard Eliáš. Analyzing Data Lineage in Database Frameworks. Master’s
thesis, D3S, MFF UK, Prague, Czech Republic, 2019.

[6] ADO .NET.
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/.

[7] JDBC.
https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html.

[8] GitFlow.
https://datasift.github.io/gitflow/IntroducingGitFlow.html.

[9] Mono.Cecil.
https://github.com/jbevain/cecil.

[10] gRPC.
https://grpc.io.

[11] Protocol Buffers.
https://developers.google.com/protocol-buffers.

[12] Confuence.
https://www.atlassian.com/software/confluence.

[13] Jira.
https://www.atlassian.com/software/jira.

[14] Slack.
https://www.atlassian.com/software/jira.

[15] Jenkins.
https://jenkins.io.

[16] Gitea.
https://gitea.io/en-us/.

21

https://getmanta.com/scanners-and-integrations/tech-summary/
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/
https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://github.com/jbevain/cecil
https://grpc.io
https://developers.google.com/protocol-buffers
https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://jenkins.io
https://gitea.io/en-us/

[17] Gitea plugin.
https://github.com/jenkinsci/gitea-plugin.

[18] Multibranch pipeline plugin.
https://jenkins.io/doc/book/pipeline/multibranch/.

[19] Docker.
https://docs.docker.com/engine/docker-overview/.

[20] Sonarlint.
https://www.sonarlint.org.

22

https://github.com/jenkinsci/gitea-plugin
https://jenkins.io/doc/book/pipeline/multibranch/
https://docs.docker.com/engine/docker-overview/
https://www.sonarlint.org

	Introduction
	Data Lineage
	MANTA Flow
	Architecture Outline
	Goals

	Symbolic Analysis
	Analysis Sensitivity
	Analyses Characteristics
	Intermediate Representation
	Algorithm Outline
	Analysis of Specific Methods
	Alias Analysis

	Functional Requirements
	Symbolic Analysis
	Inputs
	Outputs

	Nonfunctional Requirements
	Integration
	Extensibility
	Fault Tolerance
	Data Integrity
	Testing
	Continous Integration
	Code Quality
	Development Tools

	Architecture
	Connector
	Dataflow Generator

	Project Execution
	Organization
	Roles in Team
	Continuous Integration
	Future Work

	Bibliography

