
Java Trace Guide 
Project Proposal 

 
Tomáš Poch 

poch@dsrg.mff.cuni.cz 
 
 
 
A software model checker allows automatic detection of flaws in software systems by inspecting all 
states a running program can reach. In the context of the Java development, Java Pathfinder (JPF) 
 [3], state of the art model checker developed by NASA, is available and capable of detecting 
assertions, race conditions, and other errors in Java projects of a reasonable size  [5]. However, the 
communication with the user is command line based and lacks user-friendliness, efficiency, and 
interactivity of todays mature development tools. The goal of this project is to improve usability of JPF 
by its integration into a modern Java IDE. 
 
The code in the grey box on the right (taken from  [8]) is a 
typical example of race condition behavior. There are two 
threads and the result of computation depends on their 
interleaving. If line (2) is executed before line (4), division 
by zero occurs.  

public class Racer implements Runnable{
  int d = 42;  
  public void run () {  
    doSomething(1000); // (1)  
    d = 0; // (2)  
  }  
 
  public static void main (String[] a) 
  {  
    Racer racer = new Racer(); 
    Thread t = new Thread(racer); 
    t.start(); 
    doSomething(1000); // (3)  
    int c = 420 / racer.d; // (4)   
    System.out.println(c);  
  }  

Such code is hard to test and debug in an IDE, since the 
erroneous behavior can be experienced just once in many 
executions or not at all.  
 

> bin/jpf Racer 
JavaPathfinder v4.1 - (C) 1999-2007 RIACS/NASA Ames  
========================================== system under test = 
application: /Users/pcmehlitz/tmp/Racer.java  

  static void doSomething (int n) {  
    // not very interesting..  
    try { Thread.sleep(n); }  
    catch (InterruptedException ix) {}  
  }  
} 

========================================== search started:   = 
error #1 
gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty 
java.lang.ArithmeticException: division by zero 
        at Racer.main(Racer.java:20) 
===================================================== trace #1 
-------------------------------------- transition #0 thread: 0 
gov.nasa.jpf.jvm.choice.ThreadChoiceFromSet {>main} 
      [282 insn w/o sources] 
 Racer.java:15               : Racer racer = new Racer(); 
 Racer.java:1                : public class Racer  
     [1 insn w/o sources] 

 
The result of JPF analysis is shown in the 
yellow box on the left. Since JPF 
explores all interleavings, the erroneous 
behavior is eventually found and 
reported to the user. The output 
contains the error description and the 
sequence of steps leading to the error – 
error trace. Notice transition #3, where 
line (2) is executed prior to line (4), 
which takes place in transition #4. 

 Racer.java:3                : int d = 42; 
 Racer.java:15               : Racer racer = new Racer(); 
 Racer.java:16               : Thread t = new Thread(racer); 
     [51 insn w/o sources] 
 Racer.java:16               : Thread t = new Thread(racer); 
 Racer.java:17               : t.start(); 
-------------------------------------- transition #1 thread: 0 
... 
-------------------------------------- transition #2 thread: 1 
... 
-------------------------------------- transition #3 thread: 1 
gov.nasa.jpf.jvm.choice.ThreadChoiceFromSet {main,>Thread-0} 
 Racer.java:11               : d = 0;                // (2) 
 Racer.java:12               : } 
-------------------------------------- transition #4 thread: 0 
gov.nasa.jpf.jvm.choice.ThreadChoiceFromSet {>main} 
  Racer.java:20              : int c = 420 / racer.d;// (4) 

One can imagine that in more complex 
cases the traces be pretty long, contain 
many steps unrelated to the bug and it 
can be quite laborious to analyze the 
trace step by step.  

 
At the same time, the modern Java IDEs (e.g. Netbeans, Eclipse) are excellent in presentation of state 
of a paused program. The user is allowed to inspect the call stack of each thread, variable values, etc., 
and execute the program slowly forward by individual steps. 



The screenshot of Netbeans IDE 
presents the state of the example 
right after transition #3. There are 
two threads – the main thread is 
suspended before line (4) and 
Thread-0 just passed through line 
(2). The information presented to 
the user this way is identical to the 
information available in JPF at a 
certain point of the trace. 
Moreover, profiler extensions of the 
modern Java IDE present certain 
metrics (e.g. time, number of 
invocations) related to each method 
declaration. Similar metrics can be 
easily identified in JPF, related to 
how much time or space JPF requires 
to analyze a method. Such 
information is not currently revealed 
by the JPF at all, although it can be 
valuable for program optimization 
wrt. checking (writing programs 
which can be analyzed by JPF). 
 
Since the Java platform features 
standard debugging interface (JPDA) 
and profiler interface (JVMTI), the 
suggested approach is to implement 
those interfaces for JPF. Such solution allows using JPF in a Java IDE instead of a common JVM. 
However, to be able to navigate along the trace, additional interface has to be introduced (obviously, 
there is no support for "step-back" button in JPDA). 
 
Expected team size: 3-4 students 
 
Duration: 9 months 
 
 
References: 
 
[1] E. Clarke, O.Grumberg and D. Peled: Model Checking, ISBN-13: 9780262032704 
[2] J. Gosling, B. Joy,G. Steele, G. Bracha: The Java(TM) Language Specification (3rd Edition) 
[3] W. Visser, K. Havelund, G. Brat, S. Park and F.Lerda.: Model Checking Programs Automated 

Software Engineering Journal.Volume 10, Number 2, April 2003. 
[4] A. Myatt, B. Leonard and G. Wielenga: Pro NetBeans IDE 6 Rich Client Platform Edition" 
[5] G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu, 

A. Venet, W. Visser, R. Washington: Experimental Evaluation of Verification and Validation Tools 
on Martian Rover Software. Formal Methods in System Design 25(2-3): 167-198 (2004) 

 
[6] Java Platform Debugging Architecture: 

http://java.sun.com/javase/6/docs/technotes/guides/jpda/index.html 
[7] Java Virtual Machine Tool Interface: 

http://java.sun.com/javase/6/docs/technotes/guides/jvmti/index.html 
[8] Java Path Finder: http://babelfish.arc.nasa.gov/trac/jpf 


