
High Level Assembler Plugin
Project specification

Michal Bali, Marcel Hruška, Peter Polák,
Adam Šmelko, Lucia Tódová

Supervisor: Miroslav Kratochvíl

Contents

1 Background and goals 2
1.1 Related HLASM software . 2

2 HLASM overview 3
2.1 Syntax . 3

2.1.1 Statement . 3
2.1.2 Continuations . 4

2.2 Assembling . 5
2.2.1 Ordinary assembly . 5
2.2.2 Conditional assembly . 7

3 Project scope 9
3.1 Supported language features . 9
3.2 Supported LSP features . 11

4 Architecture 12
4.1 Language server description . 12
4.2 Parser library description . 14

4.2.1 Parser library API . 14
4.2.2 Analyzer . 14

4.3 Client-side VS Code extension . 16
4.4 Macro tracer . 16

5 Project execution 18
5.1 Team . 18
5.2 Team management . 18
5.3 Project timeline . 18

1

1. Background and goals

The IBM High Level Assembler Language (HLASM) is still actively used commercially,
even though it is a relatively old language. Its roots go back to the 1970s, when IBMmade
their first mainframes. Since then, the IBM assembler has been revised several times —
the last version (which is the concern of this project) was released in 1992. Although it is
hard to believe, a lot of the software that has been written in the language over the years
is still actively used andmaintained,mainly because of the conservativemainframeusers
and IBM’s vendor lock-in.

Today, HLASMdevelopers are forced to code in archaic terminals directly on themain-
frame. Therefore, they spend a lot of time navigating around the code and the environ-
ment. For example, solely due to the fact that the user needs to navigate through plenty
of terminal screens it takes around a minute just to get to a screen where it is possible
to make a change in a file and recompile. For developers, it would be extremely useful
to have an IDE plugin that would minimize contact with the mainframe terminal, could
analyze the HLASMprogram, check its validity andmake the code clearer by syntax high-
lighting.

The aim of this project is to improve HLASM programming experience, so that it can
be compared to coding in modern programming languages, by providing instant code
validity checks, advanced highlighting, code analysis, and all the functionality that a pro-
grammer currently takes for granted when writing code.

1.1 Related HLASM software
Naturally, a HLASM compiler1already exists, specifically the one from IBM. It is shipped
as part ofmainframe operating systems. Our teamwill be granted access to this compiler.
During the implementation of language features, we will use this compiler as a reference
and will try to mimic its error recognition capabilities.

Furthermore, Visual Studio Code Marketplace already has a plugin for HLASM lan-
guage called ibm-assembler2. However, it provides only basic syntax highlighting imple-
mented with textmate grammar, which has its limitations. We aim for writing a parser
that would understand every aspect of the language and provide much more functional-
ity.

1https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.cbcux01/bpxa5as.
htm

2https://marketplace.visualstudio.com/items?itemName=kelosky.ibm-assembler

2

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.cbcux01/bpxa5as.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.cbcux01/bpxa5as.htm
https://marketplace.visualstudio.com/items?itemName=kelosky.ibm-assembler

2. HLASM overview

Ordinary assembly languages consist solely of ordinarymachine instructions. High-level
assemblers generally extend themwith features commonly found in high-level program-
ming languages, such as control statements similar to if, while, for as well as custom
callable macros.

IBM High Level Assembler (HLASM) satisfies this definition and adds other features
which will be described in this section.

2.1 Syntax
HLASM syntax is similar to a common assembler, but due to historical reasons it has
limitations, like line length limited to 80 characters (as that was the length of a punched
card line).

2.1.1 Statement
HLASM program consists of a sequence of statements. A statement consists of four
fields separated by spaces that can be split into more lines using continuations (see
section 2.1.2). They are used to produce both compile-time code and run-time code (see
section 2.2). The fields are:

• Name field—Serves as a place for named constants that are to be used in the code.
This field is optional, but, when present, it must start at the begin column of a line.

• Instruction field— The only mandatory field represents the instruction that is ex-
ecuted. It must not begin in the first column, as it would be interpreted as a name
field.

• Operands field—Field for instruction operands, located immediately after instruc-
tion field. Individual operands must be separated by a comma, and, depending on
the specific instruction, can be either blank, in a form of an apostrophe separated
string, or represented by a sequence of characters.

• Remark field — Optional, serves as inline commentary. Located either after the
operands field, or, in case the operands are omitted, after the instruction field.

Listing 1 shows an example of a basic statement containing all fields.

3

Listing 1 An example statement.

name instruction operands remark
.NOMOV AGO (&WH).L1,.L2,.L3 SEQUENTIAL BRANCH

Listing 2 Example program that uses the continuation for overflowing the line.

OP1 REG12,REG07,REG04,REG00,REG01,REG11,Rx
EG02

2.1.2 Continuations
Individual statements sometimes contain more than 80 characters, which does not fit to
the historic line length limitations. Therefore, a special feature called continuation was
introduced.

For this purpose the language specification defines four special columns:

• Begin column (default position: 1)

• End column (default position: 71)

• Continuation column (default position: 72)

• Continue column (default position: 16)

The begin column defines where the statements can be started.
The end column determines the position of the end of the line. Anythingwritten to the

right of it does not count as content of the statement, and is rather used as a line sequence
number (see fig. 2.1).

The continuation column is used to indicate that the statement continues on the next
line. For proper indication, an arbitrary character other than space must be written in
this column. The remainder of the statement must then start on the continue column.

An example of an instruction where its last operand exceeded column 72 of the line
can be seen in listing 2.

Some instructions also support the extended format of the operands. That allows the
presence of a continuation character even when the contents of a line have not reached
the continuation column (see listing 3).

Figure 2.1: Description of line columns (source: HLASM Language Reference).

4

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sc264940/$file/asmr1023.pdf

Listing 3 Extended instruction format.

AIF (’&VAR’ FIND ’~’).A, REMARK1 x
(’&VAR’ EQ ’L’).B, REMARK2 x
(T’&VAR EQ ’U’).C REMARK3

2.2 Assembling
Having briefly described the syntax, now we describe the assembly process hidden be-
hind HLASM.

We distinguish two types of processing: Conditional Assembly (CA) processing and Or-
dinary processing.

The ordinary processing works withmachine instructions and assembler instructions
(see section 2.2.1.2, section 2.2.1.3). The main purpose of CA processing (see section 2.2.2)
is to generate statements for ordinary assembly.

2.2.1 Ordinary assembly
With help of machine and assembler instructions, the ordinary assembly processing is
responsible for runtime behavior of the program. Ordinary assembly allows to produce
code from traditional machine instructions, special-purpose assembler instructions and
save values in ordinary symbols.

2.2.1.1 Ordinary symbols
In HLASM, an ordinary symbol is a named constant that can represent either a simple
integer or an address. It can be defined by writing its name into the name field of a
statement. Each ordinary symbol can only be defined once, and its value is constant.
There are two kinds of ordinary symbols:

• An absolute symbol that simply has an integral value. It can be defined using a spe-
cial assembler instruction.

• A relocatable symbol that represents an address in the resulting object code. It can
be defined by writing the ordinary symbol name into the name field of a statement
with a machine instruction and denotes the address of the instruction.

2.2.1.2 Machine instructions
Machine instructions represent the actual processor instructions executed during run-
time. The assembler translates them into corresponding opcodes and processes their
operands. That does not differ from traditional assemblers. In contrast to that, HLASM
allows expressions to be passed as operands of the instructions. These expressions may
use ordinary symbols and support integer and address arithmetic.

2.2.1.3 Assembler instructions
In addition to machine instructions, the HLASM assembler provides the assembler in-
structions (in other systems commonly termed as directives). They instruct the assembler

5

Listing 4A sample program that shows that symbols can be used prior to their definition.

[01] DS CL(LEN)
[02] ADDR DS CL(SIZE)
[03]
[04] HERE DS 0H
[05] LEN EQU HERE-ADDR
[06] SIZE EQU 1

to make specific actions rather than to assemble opcodes. For example, they generate
run-time data constants, create ordinary symbols, organize the resulting object code and
generally affect how the assembler operates.

The assembler instructions include the following examples:
• ICTL—Changes values of the previously described line columns (i.e. begin column
may begin at column 2 etc.).

• DC, DS — Reserves space in object code for data described in operands field and
assembles them in place (i.e. assembles float, double, character array, address etc.).

• EQU— Defines ordinary symbols.

• COPY—Copies text from a specified file1 and pastes it in place of the instruction. It
is very similar to the C preprocessor #include directive.

• CSECT — Creates an executable control section. Serves as the beginning of a ma-
chine instruction sequence and as the start of relative addressing.

2.2.1.4 Ordinary symbols resolution
All the assembler instructions and ordinary symbols must be resolved before the assem-
bler writes the final object file. The HLASM language supports forward declaration of
ordinary symbols, so the assembly may be quite complicated. Consider an example in
listing 4. When the instruction in line 1 is seen for the first time, it is impossible to deter-
mine its length, because the symbol LEN is not defined yet 2. The same applies to the length
of the instruction in the second line. Furthermore, it is also impossible to determine the
exact value of relocatable symbols ADDR and HERE, because of the unknown length of the
preceding instructions.

In the next step, LEN is defined, but it cannot be evaluated, because the subtraction of
addresses ADDR and HERE is dependent on the unknown length of instruction on second
line and therefore on the symbol SIZE. The whole program is resolved only when the
assembly reaches the last line, which defines the length of instruction 02. Afterwards, it
is possible to resolve LEN and finally the length of instruction 01.

The dependency graph created by these principles can be arbitrarily deep and compli-
cated, however it must not contain cycles (a symbol must not be transitively dependent
on itself).

1Path to the folder of the file is passed to assembler before the start of assembly
2Character L with an expression in parentheses in DS operand of type C specifies howmany bytes should be

reserved in the program.

6

2.2.2 Conditional assembly
On top of machine and assembler instructions, the HLASM assembler offers the condi-
tional assembly. The user may think of it as a macro-language built above traditional
assembler. It alters textual representation of the source code and selects which lines will
be processed next. Conditional assembly instructions may define variable symbolswhich
canbeused in any statement to alter itsmeaning. Moreover, it is possible to definemacros
— reusable pieces of code with parameters.

2.2.2.1 Variable symbols
Variable symbols serve as points of substitution or information holders.

When they occur in a statement, they are substituted by their value to create a state-
ment processable by ordinary assembly. For example, in this manner, a user can write
a variable symbol in an operation field of a statement and generate any instruction that
can be a result of a substitution.

Variable symbols also have notion of their type — they can be defined either as an
integer, a boolean or a string. CA instructions gather this information for different sorts
of conditional branching.

2.2.2.2 CA instructions
CA instructions are not assembled into object code. Rather, they select which instructions
will be processed by assembler next.

There are instructions capable of conditional and unconditional branching. HLASM
provides a variety of built-in binary or unary operations on variable symbols, which can
create complex conditional expressions. This is important inHLASM, as the user can alter
flow of instructions that will be assembled into executable program.

Another subset of CA instructions operates on variable symbols. With them, the user
can define variable symbols locally or globally, assign or update their values.

2.2.2.3 Macros
A macro is a structure consisting of a name, input parameters and a body, which is a
sequence of statements. When a macro is called in a HLASM program, each statement
in its body is executed. Both nested and recursive calls of macros are allowed. Macro
body can contain CA instructions or even a sequence of instructions generating another
macro definition. With the help of variable symbols, HLASM macros have the power to
create custom, task specific macros.

An example of simple HLASM programwith the description of its statements is shown
in listing 5.

In lines 01-04, we see amacro definition. It is defined with a name GEN_LABEL, variable
NAME and contains one instruction in its body, which assigns the current address to the
label in NAME.

In line 06, the copy instruction is used, which includes the contents of the REGS file.
Line 08 establishes a start of an executable section TEST.
In line 09, an integer value is assigned to a variable symbol VAR. The value is the length

attribute of previously non-defined constant DOUBLE. The assembler looks for the defini-
tion of the constant to properly evaluate the conditional assembly expression. In the

7

Listing 5 An example of an artificial HLASM program.

name operation operands

[01] MACRO
[02] &NAME GEN_LABEL
[03] &NAME EQU *
[04] MEND
[05]
[06] COPY REGS
[07]
[08] TEST CSECT
[09] &VAR SETA L’DOUBLE
[10] AIF (&VAR EQ 4).END
[11] LBL1 GEN_LABEL
[12] LR 3,2
[13] L 8
[14] LBL2 GEN_LABEL
[15] LEN EQU LBL2-LBL1
[16] DC (LEN)C’HELLO’
[17] DOUBLE DC H’-3.729’
[18] .END ANOP
[19] END

next line, there is CA branching instruction AIF. If value of VAR equals to 4, next lines are
skipped and assembling continues on line 18, where branching symbol .END is located. In
that case, all the text between the AIF and .END is completely skipped — it does not even
have to be valid HLASM code.

Lines 12-13 show examples of machine instructions that are directly assembled into
object code. Lines 11 and 14 contain examples of macro call.

In line 15, the constant LEN is assigned the difference of two addresses, which results
in absolute ordinary symbol. This value is next used to generate character data.

Instruction DC in line 17 creates value of type double and assigns its address to ordi-
nary symbol DOUBLE. This constant also holds information about length, type and other
attributes of the data.

ANOP is an empty assembler action which defines the .END symbol and line 19 ends the
assembling of the program.

Although CA processing may act like a text preprocessing, it is still interlinked with
ordinary processing. CA has mechanics that allows the assembler to gather information
about statements that are printed during the processing. It can access values created in
ordinary assembly and use them in conditional branching. CA is able to lookup constants
that are not yet defined prior to the currently processed statement. Moreover, during
ordinary assembly, names of these instructions can be aliased.

To sum up, CA processing has variables to store state of compilation and CA instruc-
tions for conditional branching. Hence, it is Turing-complete while still evaluated during
compile-time.

8

3. Project scope

This chapter reviews the specific goals of our project. All the features below have been
discussedwith professional HLASMdevelopers andhave been agreed on by the company.

This project aims to produce a VS Code extension, downloadable from the Market
Place. The extension contains all executables/libraries that are needed for the project
to work correctly on the most popular platforms. No other prerequisites should be re-
quired.

Modularity of the software is another important requirement.
The project implementation provides 2 kinds of API: a complex one that mirrors the

Language Server Protocol1 (LSP) specification and a simple one that accepts a text along
with a dependency-resolver object and returns diagnostics.

The language server implements the LSP standard, hence it can be easily reintegrated
within other IDEs such as Eclipse Che.

3.1 Supported language features
This part provides a brief overview of the parts of HLASM that should be included in the
final software.

Syntax Parser The parser recognizes the syntax of HLASM and processes it into prede-
fined structures.

High-level interpretation The library interprets high-level parts of the assembler. Fol-
lowing are the conditional assembly instructions for code generation and macro
expansion:

• AIF
• AGO
• MACRO, MEND, MEXIT
• ACTR
• SETA, SETB, SETC
• ANOP
• LCLA, LCLB, LCLC
• GBLA, GBLB, GBLC
• AEJECT

1https://microsoft.github.io/language-server-protocol/

9

https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://microsoft.github.io/language-server-protocol/

• ASPACE

and assembler instructions for code layout determination:

• EQU
• DC
• DS
• DSECT, CSECT, RSECT
• LOCTR

Code Validation The back-end semantically and syntactically checks all instructions (in-
cluding machine instructions) for correct operand format usage. However, it does
not analyze the run-time register and memory values, as there is no machine in-
struction interpretation.

Dependency Search Usage of external files in HLASM is a highly common phenomenon.
Onmainframes, HLASMprograms are built according to its JCL2 file, which contains
a list of libraries. When the compiler encounters an undefined instruction or a COPY
instruction, it does a top-down search through the whole list. Both ways of invoking
a dependency search are demonstrated in listing 6. As a large portion of the pro-
grams use the same libraries, defining these JCL files gets repetitive. Therefore, the
build and source management system Endevor creates an abstraction above the li-
braries and groups them into processor groups. As a result, JCL offers an option to
identify the libraries to be included by their processor group’s ID instead of listing
them all manually.
We adapt this system to our needs and define 2 configuration files. The first one
mirrors the behavior of Endevor and defines the processor groups. The second one
matches the source codes to these processor groups.

Continuation Handling Fixed-size lines are another aspect of HLASM that needs to be
handled. They make the parsing more difficult, as the position of the continuation
character may vary.
We also add a continuation handling option to the IDE,whichmostly consists of non-
movable continuation characters, i.e. if the user types in front of the continuation
character, it stays in place.

Macro Tracer To trace the code generation, the user can step through the code while
watching the contents of variables and the call stack using Macro tracer. We imple-
ment Debug Adapter Protocol so that the process resembles standard debugging.
This tool is extremely useful as tracing the macro expansions manually gets tedious
quickly.

2Job Control Language, instructs the system how to run a specific task

10

Listing 6 An example of both ways the HLASM programmay invoke dependency search.

MAC1 1,1
COPY COPY1

3.2 Supported LSP features
This section demonstrates the possible uses of the extension on the client side. LSP pro-
vides a list of well-defined features. The project implements the following:

• Go to definition command for all symbols, macro definitions and copy members3

• Find all references command for all symbols, macro definitions and copy mem-
bers

• Completion for instructions, defined symbols and macros

• Mouse-over tooltip (hover) for symbol attributes, their locations, contents and other
useful information depending on the symbol type

• Diagnostics for syntax and semantic errors and warnings

• Server-side Highlighting for all symbols which is our custom extension of LSP

The highlighting is not a standard part of the LSP, nonetheless it is a needed addition.
Due to the complexity of HLASM, a typical syntax highlighting is not sufficient. Consider
following examples:

• The language server recognizes operand formats of different instructions. Themost
simple example is the SAM31 instruction, which does not have any operands, while
the LR instruction takes two. So the identifier right after SAM31 is colored blue as a
remark.

1 SAM31 REMARK
2 LR 1,1 REMARK

• The code skipped by the conditional assembly is not colored and stays white.

1 AGO .HERE
2 J SYMBOL
3 .HERE AIF

3Copy, along with macro expansion, is a mean to include another external file, invoked by COPY instruction.
Comparing to macro, copy does not neither need to start nor end with any specific instruction and the invoking
COPY instruction is simply replaced by the COPY file’s contents.

11

4. Architecture

The architecture is based on the way modern code editors and IDEs are extended to sup-
port additional languages. We chose to implement Language Server Protocol 1 (LSP),
which is supported by a majority of contemporary editors.

In LSP, the two parties that communicate are called a client and a language server. A
simple example is displayed in fig. 4.1 The client runs as a part of an editor. The language
servermay be a standalone application that is connected to the client by a pipe or TCP. All
language-specific user actions (for example Go to definition command) are transformed
into standard LSP messages and sent to the language server. The language server then
analyzes the source code and sends back a response, which is then interpreted and pre-
sented to the user in editor-specific way. This architecture makes possible to only have
one LSP client implementation for each code editor, whichmay be reused by all program-
ming languages. And vice versa, every language server may be easily used by any editor
that has an implementation of the LSP client.

To add support for HLASM, we have to implement the LSP language server and write
a thin extension to an editor, which will use an already existing implementation of the
LSP client. To implement source code highlighting, we need to extend the protocol with
a new notification. This notification will be used for transferring information from lan-
guage server to VS Code client, which is extended to highlight code in editor based on the
incoming custom notifications.

Here, we further decompose the project into smaller components and describe their
relations. The twomain components are the parser library and the language server— an
executable application that uses the parser library. The overall architecture is pictured
in fig. 4.2.

4.1 Language server description
The responsibility of the language server component is to maintain the LSP session, con-
vert incoming JSON messages and use the parser library to execute them. The function-
ality includes:

• reading LSP messages from standard input or TCP and writing responses

• parsing JSON RPC to C++ structures, so they can be further used

• serializing C++ structures into JSON, so it can be sent back to the client

• implementing asynchronous request handling: e.g. when user makes several con-
secutive changes to a source code, it is not needed to parse on every change

1https://microsoft.github.io/language-server-protocol/

12

https://microsoft.github.io/language-server-protocol/

Figure 4.1: LSP session example. (source: https://microsoft.github.io/
language-server-protocol/overview)

Language serverEditor or IDE (e.g. VS
Code)User

Parser library

Workspace
manager

Analyzer

HLASM Plugin
extension

Parser

Instruction
interpretation

Instruction
format

validation

Lexer

LSP extension

Macro tracer

DAP

Components of
HLASM Plugin

Third party software

LSP

Figure 4.2: The architecture of HLASM Plugin

13

https://microsoft.github.io/language-server-protocol/overview
https://microsoft.github.io/language-server-protocol/overview

4.2 Parser library description
Parser library is the core of the project — it encapsulates the analyzer, which provides all
parsing capabilities, andworkspacemanager, which keeps track of openfiles in the editor
and manages their dependencies. It has to keep the representation of workspaces and
files in the parser library exactly the same as the user sees in the editor. It also starts the
analyzer when needed, manages workspace configuration and provides external macro
and copy libraries to analyzer.

4.2.1 Parser library API
The parser library API is based on LSP — every relevant request and notification has a
corresponding method in the parsing library.

Firstly, the API has to implement the LSP notifications that ensure the editor state
synchronization. Apart from working with individual files, the LSP also supports
workspaces. A workspace is basically just a folder which contains related source codes.
The LSP also supports working with multiple workspaces at the same time. We use it
when searching for dependencies of HLASM source codes (macros, and copy files).

The parser library needs to have the exact contents of all files in opened workspaces.
To achieve that, there is a file watcher running in the LSP client that notifies the server
when any of the HLASM source files is changed outside of editor. For example, when a
user deletes an external macro file, the parser library should react by reporting that it
cannot find the macro.

The list of necessary editor state synchronization notifications follows:

• Text synchronization notifications (didOpen, didChange, didClose) which inform
the library about files that are currently open in the editor and their exact contents.

• DidChangeWorkspaceFolders notification which informs the library when a
workspace has been opened or closed.

• DidChangeWatchedFiles notification

Secondly, the API has to implement the requests and notifications that provide the
parsing results:

• publishDiagnostics notification. A diagnostic is used to indicate a problem with
source files, such as a compiler error or a warning. The parser library provides
a callback to let the language server know that diagnostics have changed.

• Callback for highlighting information provision.

• Language feature requests (definition, references, hover, completion), which pro-
vide information needed for proper reaction of the editor on user actions.

4.2.2 Analyzer
The analyzer is able to process a single HLASM file. The processing includes:

• recognition of statements and their parts (lexing and parsing)

• interpretation of instructions that should be executed in compile time

14

• a check whether the HLASM source code is well-formed

• reporting of problems with the source by producing LSP diagnostics

• providing highlighting and LSP information

AHLASMfilemay have dependencies— other files that definemacros or files brought
in by the COPY instruction. The dependencies are only discovered during the processing
of files, so it is not possible to provide the files beforehand. The analyzer gets a callback
that would find a file with specified name, parse its contents and return it as list of parsed
statements.

To sum up, the analyzer has a pretty simple API: it takes the contents of a source file
by common string and a callback that can parse external files with specified name. It
provides a list of diagnostics linked to the file, highlighting, list of symbol definitions, etc.

The analyzer is further decomposed into 4 components.

4.2.2.1 Lexer
Lexer’s task is to read source string and break it into tokens — small pieces of text with
special meaning. The most important properties of the lexer:

• each token has location in the source text

• has the ability to check whether all characters are valid in the HLASM source

• has the ability to jump in the source file backward and forward if necessary (for
implementation of instructions like AGO and AIF). Because of this, it is not possible
to use any standard lexing tool and the lexer has to be implemented from scratch.

4.2.2.2 Parser
Parser component takes the stream of tokens the lexer produces and recognizes HLASM
statements according to the syntax. To accomplish this, a parser generator tool Antlr 4 2

is used.
The input to Antlr is a grammar (written in antlr-specific language) that specifies the

syntax of HLASM language and generates source code (in C++) for a recognizer, which is
able to tell whether input source code is valid or not. Moreover, it is possible to assign a
piece of code that executes every time a grammar rule is matched by the recognizer to
further process the matched piece of code.

4.2.2.3 Instruction interpretation
Results of the parser component are further analyzed in the processing component. Its
most important capabilities are:

• Interpretation of CA instructions, which results inmodifying the lexer state (moving
back and forth in the input file).

• Substitution of variable symbols. After the substitution, the statement must be
reparsed in the lexer and the parser, since the substitution may completely change
its meaning.

2https://www.antlr.org

15

https://www.antlr.org

• Interpretation of assembler instructions

• Ordinary symbols resolution

• MACRO and COPY expansion.

4.2.2.4 Instruction format validation
After a statement is fully processed and all operands of each instruction are known, the
statement needs to be checked for errors. There are over 2000machine instructions with
variable number of operands and various restrictions on those operands— some of them
take only positive numbers, numbers that are in specific range or are limited to addresses
only. The core of the component is a great table that describes all the instructions and
their operands.

The API of the validation component is simple: it takes an instruction and list of its
operands and returns a list of warnings and errors in the form of LSP diagnostics.

4.3 Client-side VS Code extension
The VS Code extension component ensures seamless integration with the editor. Its func-
tions are:

• to start the HLASM language server and the LSP client that comes with VS Code, and
create a connection between them

• to implement extension of the LSP protocol to enable server-side highlighting. The
extended client parses the information from the server and uses VS Code API to
actually color the text in the editor.

• to implement continuation handling — when the user types something in front of
the continuation character, it should stay in place.

4.4 Macro tracer
Themacro tracer enables the user to trace the compilation ofHLASMsource code in away
similar to common debugging. This is the reason why we chose to implement the Debug
Adapter Protocol 3 (DAP). It is very similar to LSP, so most of the code implementing LSP
in the language server component may be reused for both protocols.

The language server component communicates with the macro tracer component in
the parser library. Its API mirrors the requests and events of DAP. The most important
features to implement are:

• launch, continue, next, stepIn and disconnect requests, which allow the user to con-
trol the flow of the compilation

• SetBreakpoints, which transfers the information about breakpoints that the user
has placed in the code

3https://microsoft.github.io/debug-adapter-protocol/

16

https://microsoft.github.io/debug-adapter-protocol/

• Threads, StackTrace, Scopes and Variables requests to allow the DAP client to re-
trieve information about the current processing stack (stack of nested macros and
copy instructions), available variable symbols and their values

• stopped, exited and terminated events to let the DAP client know about state of
traced source code

The macro tracer communicates with the workspace manager to retrieve the content
of the traced files. Afterwards, it starts analyzing the source file in a separate thread
and gets callbacks from the analyzer before each statement is processed. In the callback,
the tracer puts the thread to sleep and waits for user interaction. During this time, it is
possible to retrieve all variable and stack information from the processing to display it
to the user.

17

5. Project execution

5.1 Team
This team consists of five members:

• Michal Bali,

• Marcel Hruška,

• Peter Polák,

• Adam Šmelko,

• Lucia Tódová.

Each team member is responsible for delivering work packages assigned to him or
her (see section 5.3).

5.2 Teammanagement
Formanaging the project and teammembersweuse a visual processmanagement system
Kanban. Additionally, the project is developed within the environment of Broadcom Inc.,
which supplies additional project management and supervision. We are attempting to
follow the Agile software development guidelines — our team meets every week with
our Broadcom supervisor at stand-ups and discusses the current status of particular tasks
with their assignees, reviews progress and plans work for the next week.

Slack is used for dynamic communication between team members.

5.3 Project timeline
The project was split into several milestones and work packages, specified closer in ta-
ble 5.1. The implementation of the whole project was planned to be accomplished within
nine months.

The project has been already worked on for four months, which has resulted in com-
pletion of the initial milestones up to a large portion of Preview. Therefore, there is now
a working prototype of the HLASM plugin, and some of the presented work packages are
already finished.

Since most of the architecture, design and planning questions have already been an-
swered during the development of the prototype, we do not expect any serious technical

18

or architectural issues to surface at this point. Additionally, the company support from
Broadcom Inc. prevents financing and motivation issues. We therefore assume that it is
very probable that the project will be completed as planned.

The work packages have been assigned to individual team members based on long-
term planning. The assignments and corresponding deadlines are listed in table 5.1, and
summarized by a diagram in fig. 5.1.

19

Table 5.1: The milestones and work packages organisation

Ms. Milestone description WP Work package description Assignees

M1 Research and analysis

WP1
HLASM language analysis
Analysis of HLASM specification,
available code and discussion with
HLASM users.

Adam
Marcel

WP2
Parser libraries research
Research and comparison of
contemporary lexical and parser libraries
(Bison, ANTLR, ...).

Peter

WP3
IDEs research
Research of available IDEs to which
would be the HLASM language support
integrated.

Lucia
Michal

Deadline: month 1

M2

HLASM syntax support
At the second milestone, the plugin is able
to parse HLASM syntax, which is shown
to the user with server-side highlighting.
There is a working implementation of
LSP on the server side, which
communicates to the VS Code LSP client.
The LSP is extended to transfer
server-side highlighting information.

WP4 Lexer Lucia
Peter

WP5 Parser Adam
Marcel

WP6 LSP implementation Michal

WP7 Server-side highlighting Marcel

Deadline: month 2

20

M3 Detailed specification WP8 Detailed specification all

Deadline: month 3

M4

Preview

The output of this milestone is a working
demo and its presentation in Broadcom.
The parser is able to interpret conditional
assembly instructions and expand
macros defined within the same source
file. It is able to present problems with
HLASM source code via LSP diagnostics,
and LSP features like Hover or Go to
definitions are working with variable
symbols.

WP9
Macro tracer POC
Proof of concept of the macro tracer by
implementation of the Debug Adapter
Protocol (see section 4.4).

Michal

WP10 Validation of assembler instructions
operands

Lucia

WP11
CA instructions
Interpretation and validation of the
conditional assembly instructions.

Adam

WP12
CA expressions
Evaluation of the conditional assembly
expressions.

Peter

WP13
Macro expansion
Only macros defined within the same file
required.

Adam

WP14
Conditional assembly LSP features
Hover, Go to definition and Find all
references for variable symbols

Marcel

Deadline: month 4

21

M5

Multiple files parsing

The plugin is able to parse macros from
separate files and is able to interpret the
COPY instruction. The user experience is
improved by continuation handling.

WP15
Machine expressions
Evaluation of expressions that are used in
assembler and machine instructions.

Michal

WP16

Continuation handling
VS Code extension functionality to
improve working with continuations —
when typing, the continuation at the end
of the line should stay in place.

Marcel

WP17
External files parsing
Interpretation of COPY instruction, macro
expansion from separate files.

Adam

WP18
File dependencies
Configuration of processor groups and
dependency search (see section 3.1)

Michal
Deadline: month 5

M6

Ordinary assembly implementation

The plugin is able to interpret the EQU
and DC instructions and thus evaluate
most of ordinary symbols (see
section 2.2.1.4). The acquired values are
then used to validate machine instruction
operands. Additionally, the user can Go to
definition on ordinary symbols and show
their values using mouse hover tooltips.

WP19 Validation of assembler instructions
operands Lucia

WP20
DC instruction
parsing, validation and length of data
definition operand

Michal
Peter

WP21 Ordinary symbols
ordinary assembly implementation

Peter
Adam

WP22
Ordinary LSP features
implementation of support for ordinary
symbols

Marcel
Deadline: month 7

22

M7

Finalization
We reserve some time to polish user
experience, finish all components and
implement smaller (but important)
HLASM features that were not explicitly
planned.

WP23 Finalization all

Deadline: month 8

M8

Feature testing

After the M8 milestone, the software
should be well tested, stable and able to
run seamlessly on any major platform.

WP24 Testing all

WP25
Multi-platform deployment
Deployment on Windows, Linux and
MacOS

Michal

WP26 Code coverage Lucia

WP27

Benchmark
Creation of a performance measuring
tool that measures how much time the
parser needs to analyze a file. It also
measures number of processed lines.

Marcel

Deadline: month 9

M9
Documentation

WP28 Documentation all
Deadline: month 9

M10
Final Presentation

WP29 Final presentation all
Deadline: month 9

23

M
on

th
1

M
on

th
2

M
on

th
3

M
on

th
4

M
on

th
5

M
on

th
6

M
on

th
7

M
on

th
8

M
on

th
9

to
da

y

IDEs research Lucia, Michal

Parser libraries research Peter

HLASM analysis Adam, Marcel

Lexer Lucia, Peter

Parser Adam, Marcel

LSP implementation Michal

Server-side highlighting Marcel

Detailed specification all

Macro tracer POC Michal

Validation of assembler instructions operands Lucia

CA instructions Adam

CA expressions Peter

Macro expansion Adam

Conditional assembly LSP features Marcel

Machine expressions Michal

Continuation handling Marcel

External files parsing Adam

File dependencies Michal

Validation of assembler instructions operands Lucia

DC instruction Michal, Peter

Ordinary symbols Peter, Adam

Ordinary LSP features Marcel

Finalization all

Testing all

Multi-platform deployment Michal

Code coverage Lucia

Benchmark Marcel

Documentation all

Final presentation all

Figure 5.1: Work packages overview

24

	Background and goals
	Related HLASM software

	HLASM overview
	Syntax
	Statement
	Continuations

	Assembling
	Ordinary assembly
	Conditional assembly

	Project scope
	Supported language features
	Supported LSP features

	Architecture
	Language server description
	Parser library description
	Parser library API
	Analyzer

	Client-side VS Code extension
	Macro tracer

	Project execution
	Team
	Team management
	Project timeline

