
Project: Drone Labs
Project manager: Tomáš PLch (tomas.plch@gmail.com), KSVI

Team:

Vojtěch Sedláček
Martin Skalský

Oto Petř́ık
Tomáš Dzurenko

Robert Husák
Lukáš Kŕıžik

Date of completion: June 2014

Motivation

Robot prototyping and development is a difficult task not only to enthusiasts,
but to professionals as well. The design and construction of a robot consists
of three major phases

a) hardware design

b) construction design and realization

c) software development.

In respect to hardware, there is the notion of utilizing templated open
source hardware kits that are housing the necessary hardware - i.e. processing
units, controllers, sensor kits etc. It is also possible to develop custom hard-
ware for a specific task or robot, but it is expensive and tedious task. While
there is some reusable control software, generally the options are limited and
the development is hard and complicated due to lack of development envi-
ronments and debugging tools. Debugging a live robot can be a hard and
dangerous task. The introduction of aerial robots has made all the above
tasks even more complicated and expensive. Given the current state, we
decided to create a development environment for drone control software.

1



Inspiration

Despite the abundance of general integrated development environments such
as Visual Studio, Eclipse or Netbeans, we believe that development of drone
control software should be easier. Conceptually, we are inspired by the Poga-
mut project developed at the faculty for the last 8 years and its idea of reduc-
ing programmer’s workload by providing matched platform and development
environment. Encouraged by component systems in embedded domain (e.g.
ProCom), we believe that it is viable to base the system on distributed com-
ponents.

Problems

In order to develop drone control software, developer has to tie together
different parts of hardware and software. Various drones and input devices
have different APIs and support libraries, often in multiple incompatible ver-
sions. Developing and especially debugging program on such platform is an
unpleasant experience. Complexity of the problem lies in rather large range
of abstraction levels (from low level input APIs to limited high level drone
libraries), limited operating system support and issues caused by opaque
internals of most drones. As such the field can be considered hostile to new-
comer developers. Developing control software for multiple drones or running
on multiple nodes can be daunting at best.

Goals

Our primary goal is to simplify development of control software for aerial
robots, namely the R-UAV (Rotor Unmanned Aerial Vehicles), also known as
quadcopters. The main trait of the application will be the capability to create
control software and artificial intelligence mechanisms for a custom R-UAV.
The application GUI and the underlying middleware will allow user to create
components and simple programs to control the R-UAV. The component
middleware will allow simpler porting between robotic platforms. We also
aim at providing simple debugging features for tracking and inspecting the
robot’s status and operation.

2



Project structure

Our proposed solution consists of multiple loosely connected parts. We ex-
pect most of the development to be done in parallel, with the exception of
the initial stage of the component system implementation.

Component-based environment

In order to allow development of reusable drone control software, we will
provide a component system implemented in C++. Initial inspiration came
from ProCom - the Progress Component Model. However, we will implement
a component system ourselves. Where deemed useful, we adopt design fea-
tures of ProCom, but we do not aim to create strict (or full) reimplementation
of ProCom.

Our component system will consist of two separate layers. Lower layer
is used to create tightly-coupled, low-level component structures with none
to very low communication overhead. Higher layer is used to connect high-
level components, possibly running in different processes, using messages
sent through established connections between components’ endpoints. User
will have the option to implement higher-layer component by instantiating
a lower-layer component system and use small amount of C++ code to pass
(and optionally transform) messages between the layers.

Some experimental work on the component system has been already done.
For the lower layer, the very first prototype based on class generation using
templates was already implemented. For all intents and purposes, design of
the higher layer is completed, main 3rd party libraries for its implementation
were selected (Protocol Buffers, ZeroMQ, Boost::ASIO) and some experimen-
tal code was written.

ProCom reference:
http://www.idt.mdh.se/pride/data/documents/ProComRefManual-v1.1.pdf

Scripting

As a demonstration of usability of our component-based environment, we’ll
also implement simple support for scripting. Scripts can be used to control
robots in a similar way as they are used in computer games to manipulate
with NPCs and their behaviour. Loader and interpreter will be represented
as a component or set of components keeping other parts of system relatively
independent. Scripts can be used to create more complex tasks for robots
without detailed knowledge of underlying language.

3

http://www.idt.mdh.se/pride/data/documents/ProComRefManual-v1.1.pdf


IDE

In order to fully take advantage of resulting platform, additional support
tools are required. To make developer experience as easy as possible, we
will provide an augmented IDE. It will be implemented as modification to
QtCreator (either as a plugin or custom build), to avoid implementing an
IDE from the ground up.

Drone pilot application

As a ”pilot” application to show benefits of our architecture we will create
Drone Pilot. Its purpose will be to enable piloting drones using several
types of controlling devices. Those comprise not only joystick and gamepad,
but also 3DConnexion Space Navigator, sometimes called 3D mouse, and
Novint Falcon, 3D positioning device with force feedback. The application
will utilize the component system in order to maximize its extensibility and
maintainability. Potential developers will be able to simply create bindings
with types of drones and controlling devices not originally available in the
application. While we expect users to develop their applications conveniently
using our IDE, the development of the pilot application will begin before the
IDE is complete, as they will be developed in parallel.

Test vehicle

Based on our experience, we chose AR.Drone and Bitcraze Crazyflie 10DOF
quadcopters as testing vehicles. While there are open source libraries for
communication with these drones, we take advantage of rather simple com-
munication protocols and we will implement our own software to handle drone
communication and connection to component system for better integration
with our project structure and its core facilities. The other reason not to
use open source libraries is their relatively low quality and high maintenance
cost. We would need to enhance their functionality to support our own more
generic protocol for communication with the rest of the component system.
We expect that maintaining forked low-quality libraries would be harder than
writing simple protocol library ourselves.

4


