
Project summary
Project name C# Base Language for MPS

Acronym CS4MPS

Supervisor Pavel Parízek (parizek@d3s.mff.cuni.cz)

Consultants Václav Pech, JetBrains (vaclav@jetbrains.com)

Abstract The goal of this project is to add support for the C# programming language into
MPS – an open-source language workbench. Participants have to implement all
the important aspects of the language, namely its abstract syntax, editor, and 
text generator. As a result, the project should deliver implementation of the 
language packaged as an MPS plugin that will be distributed freely under an 
open-source license.

Motivation
JetBrains MPS (http://www.jetbrains.com/mps) is an open-source language workbench focusing on 
Domain-specific Languages (DSL). Code written in DSLs needs to be automatically transformed 
into one or more General-purpose languages (GPL), such as Java, JavaScript, C# or XML, before 
triggering the compiler of the target platform and generating binary code that is actually executed.

At the moment MPS supports only Java and XML as the target GPLs. Both languages have been 
implemented in MPS. Industry users have been rising interest in other GPLs being supported – 
JavaScript, Python and C# are among the most demanded. A few open-source projects have already
been started (e.g., for JavaScript - https://github.com/mar9000/ecmascript4mps).

With the limited resources that JetBrains can put into open-source activities we would welcome 
efforts that would lead to generally available functional implementations of these GPLs.

Project description
Unlike many competing language workbenches and in contrast to the industry prevalent approach, 
MPS uses a projectional (structured) editor for editing code. The developer directly manipulates the 
program in its tree (AST) form. The code is always represented as AST, including the persistence 
format, which avoids the need for parsing text.

This approach was chosen in order to give language authors:

• greater flexibility of the language syntaxes – tabular, graphical, textual or form-like 
notations are all possible

• ability to switch between notations on-the-fly and thus view the same code in different ways
depending on the task at hands

• modularity of languages, which enables languages to be easily combined – extended, 
embeded, reused or referrenced from one another

Languages in MPS are defined using principles of object-oriented programming, instead of 
grammars.

http://www.jetbrains.com/mps
https://github.com/mar9000/ecmascript4mps


Since MPS does not rely on parsing, but instead uses a projectional (structured) editor and layered 
code generation, existing GPLs that should be made editable and generatable in MPS need to be re-
implemented using the MPS language definition facilities. Only then can these GPLs be used as 
targets for code generation in MPS.

The main goal of this project is to implement support for an additional GPL, namely C#, into the 
MPS workbench. Participants should implement full basic support for this language and one or 
more of the advanced features listed below.

Basic support for a GPL requires at least the definition of its structure (abstract syntax), simple 
editor (concrete syntax), and a module for conversion into text (TextGen). More advanced features, 
such as smooth editing, type rules, data-flow, refactorings, code analysis and stub models make 
usage of the GPL much easier and less error prone. The output of the project will be distributed as 
an MPS language plugin under the open-source Apache 2 license and available for free download. 
All outputs including documentation will be in English.

Expected effort
Number of participants: 5

Demands on participants:

• A good command of Java is preferred, since Java is used as the base for all language 
definition facilities in MPS.

Completion date: 9 months since the start

Main project tasks and overall schedule:

• Participants will have to learn how to use MPS and how to define languages in it. [1-2 
months]

• Participants will have to familiarize with the respective target GPLs' syntaxes and study the 
prototypes, where they exist. [1 month]

• Set up the development infrastructure (VCS, CI), create automated build scripts and plan 
their efforts. [0.5 month]

• Add support for the C# language into MPS following its official grammar definition. As 
indicated above, this will include implementation of the abstract syntax, editor, text 
generation module, and some of the advanced features such as type rules. [5 months]

• Package the language as an plugins for MPS, document the project and enable future 
evolution of this project. [1 month]

MPS is a stable tool evolved and supported by JetBrains that imposes no extra risks on the project. 
A consultant from JetBrains will be available to help the team members familiarize with MPS at the
beginning of the project and get over difficulties in using the tool. In addition, regular meetings with
the consultant are planned for the whole duration of the project.

The existing prototype implementations of some GPLs may or may not provide good starting points



for the project, and so will require careful investigation before making a decision whether to build 
upon them.

In general, the project is feasible for a 5-member team and a 9 month realization time span.

Project characterization
The project targets the following areas (mark suitable areas):

Discrete models and algorithms

discrete mathematics and algorithms

geometry and mathematical structures in informatics

optimization

Theoretical informatics

theoretical informatics

Software and data engineering

x software engineering

x software development

x web engineering

databases

big data analysis and processing

Software systems

system programming

dependable systems

high-performance systems

Mathematical linguistics

computer and formal linguistics

statistical methods and machine learning in computer linguistics

Artificial intelligence

smart agents

machine learning

robotics

Computer graphics and game development

computer graphics

game development


	Project summary
	Motivation

	Project description
	Expected effort
	Project characterization

