
Basic information
Project name Object movement intention annotation tool

Abbreviation AnTool

Supervisor RNDr. Júlia Škovierová, Ph.D. <julia.skovierova@cvut.cz>

Consultant Mgr. Radoslav Škoveira, Ph.D. <radoslav.skoveira@cvut.cz>
RNDr. David Bednárek, Ph.D. <bednarek@ksi.mff.cuni.cz>

Annotation AnTool will use data captured by sensors of a self-driving car within H2020
project UP-Drive (http://up-drive.eu/). This data should suffice for the AnTool
project life span. The more general and secondary goal is to make AnTool
useful in other application domains, e.g. a general traffic related data.
AnTool should be able to generate automatic annotations for certain specified
traffic related behaviours as well as the possibility to edit the generated
annotations easily (e.g. to correct possible mistakes of the automatic system)
and create manual annotations.

Motivation
In recent years, the amount of statistically-based decision making applications requiring huge
training data is growing rapidly. The prime example are topical convolutional neural networks
(CNNs). Decision making applications are mostly learned empirically in statistical manner.

The quality of training set (annotated data) influences the error rate of the classifier significantly.
The task suggested as a student software project is to design, develop and implement the semi-
automatic annotation tool (AnTool). AnTool should be designed for moving objects in a data
stream. AnTool will be developed to work primarily with UP-Drive data, however, it should be able
to work with different data from traffic related projects (traffic monitoring, self-driving car, …).

Data annotation can be performed manually, automatically, or semi-automatically. One example of a
manual annotation is LabelMe (http://labelme.csail.mit.edu/Release3.0/), which is used for labelling
objects in images. However, manual labelling is often very time and money consuming, especially
for large databases, therefore automatic or at least semi-automatic annotation is preferred.

Project description
The AnTool should consist of these parts:

a) Module for processing of input data

b) Annotation module

c) Interface for automatic/manual annotation

Module for processing of input data:

 The input data for the development of the software will come from UP-Drive project focused on
autonomous urban driving. The data will consist of map (including road information such as
junction connections, position of zebra crossings, speed limits, etc.), information about ego car
(i.e. the car performing the data recording; information will include GPS position, speed,

heading of the car,…) and information about all detected objects (e.g. position of other objects
in the scene with respect to ego car).

 Detected objects have attached additional (semantic) information such as object’s classification,
position, heading, speed, etc.

 The information about all dynamic objects is updated periodically.

 It should be possible to create custom data importer capable of reading different input data
format. That means the developed software will have internal representation of the data
independent of the format of the input data.

 Functionality specification

o Map information

 Load input map data from an xml file

o Ego car data

 Load ego data (position, speed, heading,…) for each timestamp based on
specification in a header file

o Dynamic object data

 For each timestamp: Load information about all objects (id, classification,
position, speed, …)

o All data import functions must be programmed as separate modules to be easily replaced

for different data formats

Annotation module:

 The core functionality is detection of intentions/behaviours of dynamic objects in the processed
data and creating meaningful annotations of these intentions/behaviours.

 Annotations:

 The annotations of intentions/behaviours of objects should analyse data several seconds
into each object’s future (it should be possible to specify the exact time interval). It is
important to take into account possible imperfections in measured data, e.g. noise.
Favorable solution to this is computing behavior over a certain period of time (specified
by the user), i.e. computing the behavior using sliding window approach.

 For each time step, there is information about all object`s classification, position,
heading, etc.

 The set of possible intentions/behaviours will be determined based on the object`s
classification, e.g. pedestrian, bicycle, car. Examples of annotations in the case of
intention estimations in traffic situations:

 Pedestrian: crossing the road, walking along the road...

 Car: stopping, overtaking, parking, turning...

 Intention annotations can be derived from object`s information in time in two possible
ways:

 This information can be derived from object`s information in future, where we
can see its position/speed/heading. Based on this information, we can annotate
the intention in current time.

 Looking from object`s future, its intention can be set into past.

 The fact, that the objects are not tracked during the whole recording should be
considered - e.g. add information about the reliability of intention annotation. The tool
should also be able to deal with missing data (e.g. temporal disappearance of object due
to occlusion or permanent object disappearance of object due to it being out of range of
the sensors). Positions of missing objects should be approximated using a simplistic
estimation (temporal disappearance: simple position interpolation; permanent
disappearance: simple physics based position estimation set time period into the future –
usually a few seconds). Approximated positions should also be scored with reliability
(with reliability decreasing from 1 to 0 with increasing consecutive length of the
predictions) which should be used in the final computation of the probability/reliability
of the behaviour annotation.

 The annotation tool should work autonomously as much as possible, but allow for manual input
as well.

 Modularity – Expanding the set of detected behaviours (i.e. creating detectors for new
intentions/behaviours) should be part of the core functionality. Ideally, definitions for at least
simple rule-based detectors will be separated from the program itself (e.g. in a text file).

 The possibility of the future development (the software should be implemented so that further
development of general functionality will be as simple as possible).

 The possibility of online/offline data processing. Software should be capable of operating in two
modes:

 offline automatic annotation - performing annotation as fast as possible without
visualization (with possibility of replaying the generated annotations with visualization),

 online automatic annotation - visualizing the annotation process and allowing user
interaction.

 It should be possible to load already annotated data for further manual editing and viewing.

 The type of annotation (manual/automatic) should be clearly marked.

 Designing suitable output format (i.e. format of the annotation data) will be part of the project.

 Data Flow example

 Object intention annotation example

Situation:

 Ego car is approaching zebra crossing. Pedestrian walking along the road, pedestrian will
cross the road on zebra crossing

Input:

 Object: position, heading, classification (pedestrian 90%, bicycle 10%)

 Car: position, heading, speed, acceleration

Annotation

 It is important to take into account not only object information from time ti+n s, but also
information in time between current time ti and time ti+n. The exact time shift should be
customizable (in the example below, we use n=5).

 Pedestrian: will cross the street

Output

 Annotation of intention in time ti, that pedestrian will cross the street.

 Functionality specification - Annotations

o For each object this information needs to be extracted or computed from the provided

data:

 Object ID

 Infrastructure IDs (Set of infrastructure elements that are important for the
intention, e.g. zebra crossing, line)

 Probability (Probability of this intention estimate)

 Reliability (e.g. in the case where the object is not currently visible and its
position is being approximated)

 Specification of the intention (e.g. straight, turn, ...)

o It is important to take into account not only the positions in times t and t+n, but also the

positions between these times. Therefore, the input for annotations will be an array of
positions of the object between time t and t+n and the whole map information.

o In case the intention cannot be decided in the current time span, there should be

possibility to extend this time span. E.g. if the pedestrian is on the left side of the road in
time t and on the road in time t+n, it should be possible to look (several) second(s) into
the future to see if pedestrian actually crossed the road and is on the right side of the
road (otherwise it might have been a noise, pedestrian changed mind, etc.).

o Currently, only pedestrian related intentions should be processed in the program.

However, the system should be developed with the capability to implement detection
rules for other traffic intentions – see section “The possible annotations for cars”.

o The possible annotations for pedestrians:

 Walk along the road: The position of the pedestrian in respect to the road will not
change over time, e.g. the pedestrian will be on the right side of the road in all
time steps between t and t+n.

 Standing: The position of pedestrian will not change between the time t and t+n.
It should be possible to set a deviation within which the pedestrian’s position will

be considered as unchanged (only in the script for the rule, i.e. not in the GUI).

 Cross on a zebra crossing (+direction): The pedestrian is on one side of the road
in time t and on the other side of the road or on the road (need to check position
further in time) in time t+n. The pedestrian is on pedestrian crossing or near it. It
should be possible to set a max distance parameter, where the pedestrian is
considered to be still on or near a zebra crossing (only in the script for the rule).

 Cross outside of zebra crossing (+direction): The pedestrian is on one side of the
road in time t and on the other side of the road or on the road (need to check
further in time) in time t+n. The pedestrian is crossing the road away from any
pedestrian crossing.

o The possible annotations for cars:

 Lane Intention (Follow, Change, Change Left, Change Right)

 Multi-object intention (Follow, Overtake)

 Cross traffic intention (Ignore, Yield, Make Way)

 Longitudinal intention (Accelerate, Constant, Decelerate)

 Zebra crossing intention (Stop, Pass)

 Crossing Intention (Turn Left, Turn Right, Go Straight, U Turn)

Interface for automatic/manual annotation:

 Interface should contain (simple vector) graphical visualization of processed data (e.g. objects
on the map) with visualized intentions and movement trajectories. It should also visualize
temporal progression through the current recording (e.g. a progress bar). In case of replaying
already annotated data, the progress bar should also serve as a mean to skip to any part of the
recording.

 The human operator should be able to observe the visualized sequence and if he/she spots a
wrong annotation, he/she should be able to stop the tracking and provide manual annotation.
Otherwise the automatic annotations will be accepted.

 Graphic User Interface (GUI) functionality specification

 Main functionality

o Loading of the input data (map, ego car data, object data) using a dialog window.

o Run automatic annotations with loaded data, which can be performed offline.

 Possibility of changing of the control parameters such as prediction
interval and sliding window size.

o Real-time playback of the annotated data.

o Possibility of stopping the real-time playback and changing the annotations

manually.

o Clear marking of manual/automatic annotations and annotations requiring

additional correction (e.g. annotations with low reliability).

o Save the data in general format (e.g. txt, see sec. Platform, technologies)

 Displaying the data

o Simple vector graphic with map displaying and simple objects (e.g. see figure).

o Display: map information, ego car, other objects (pedestrian, car, bicycle, …)

o For each object show in separated dialog/part of the GUI:

 All possible input informations (position, category, speed,...)

 Annotations

Platform, technologies
The output software should contain user-friendly GUI with well-written documentation for good
understanding of used approach.

AnTool should be written in C++, C# or Python to match software development tools used in UP-
Drive project.

The output file should be a text file for easy portability among different programs and possible
human readability. The suggested data format is JSON.

Difficulty estimation
Number of people: A team of 4-5 students.

The deadline for completion: optimally 7 months (maximum 9 months)

Plan of the work:

1st month: analysis of the input/output data, analysis of requirements for
implementation, proposal of software architecture

2nd – 5th month: implementation and testing

4rd month: core functionality implemented (automatic annotation)

5th month: additional functionality implemented (user interface, manual
annotation)

6th – 7(9)th month: testing, debugging, software and user documentation

Project definition
Project is focused on followed areas:

Discrete models and algorithms

Discrete mathematics and algorithms

Geometry and mathematical structures in computer science

Optimisation

Theoretical Computer Science

Theoretical Computer Science

Software and data engineering

 X Data engineering

 X Software development

Web engineering

Database systems

 X Analysis and big data processing

Software systems

System programming

Reliable systems

Powerful systems

Mathematical linguistics

Computer and formal linguistics

Statistics methods and machine learning in computer linguistics

Artificial intelligence

Intelligent agents

 X Machine learning

Robotics

Computer graphics and development of computer games

Computer graphics

Development of computer games

Notes
none

	Basic information
	Motivation

	Project description
	Platform, technologies
	Difficulty estimation
	Project definition
	Notes

