User preference ordering of semantized web data

Peter Vojtáš

Kolokvium KSI MFF UK

Tuesday March 8th, 2011 in S8
Flooded by web - dependent on SE – no feedback

- Flooded by web
- Dependent on SE
- No user feedback
- Semantic web
- SWOT of sem. Web
- Project of web semantic(fic/z)ation = conceptualization = is GAV/LAV possible on the scale of Web (read only)
- (referee) quite ambitious goal, and of foremost importance ... the gap can probably not be bridged otherwise than by automatic semantization ...
Content

• **Motivation**, use cases, examples
• Fagin **model** – ordered RDF (triple) distributed data, user preference, top-k algorithm
• Different **users** – interface, formulation of user preference learning, index for preference order
• **Calculus** for user preference ordering of semantized web data
• **Dimensions** of the problem
• Conclusions, future work, problems, plans
Motivation – e-shop – find best (top-k) for user...

• Classical e-shop
 – Strict criteria on attributes
 • Price ≤100$, HDD ≥ 1T, RAM ≥ 2G
 – Conjunction of criteria
 – Simple ordering by price, name
 – Many or few objects
 – Same answer for every user

• From the point of view of producer, service provider, seller, meta-eshop, buyer, user dependent multicriterial ordering, ...
Motivation – no metadata, URL?, readability, ...

• safe cars and roads
 – From which data, where are those data?
 – Text understanding – key word and/or NLP

• judge and bankruptcy clearing process
 – Example 200M debts, left 10M, judge gets 1M
 – Published by law (no computer readable format prescribed e.g. flash, “bad” pdf) OCR?

• public financing
 – Where and when published

• multimedia – which features model user query

• Can Web2.0, social dimension help?
Software Engineering Methodologies

- Waterfall
 - Problem known
 - Solution known
- XP, Agile, ...
 - Problem known
 - Solution unknown
- Jan Rajlich Incremental changes
- Just a start up idea?
- Eric Ries Lean startup
 - Problem unknown
 - Solution unknown
- A social network
- Web Semantization
Fagin (almost lean startup) idea

• Looking for multimedia clip (one server)
 – loud
 – dominantly red

• Looking for a NY restaurant
 – Italian cuisine, Zagat Review
 – price level
 – Close to, safe neighborhood, ...
 – Parking possibilities

• Garlic project of IBM Almaden Research Centre
Model Fagin – Lotem - Naor

Objects \{R_i : i \leq N\}, m attributes
R has user preference score
\(x_1^R, x_2^R, \ldots, x_m^R \in [0, 1]\)
Data in m ordered lists \(L_1, \ldots, L_m\)
Entry in \(L_i\) has form \((R, x_i^R)\) – RDF
Data access:
- Sequential by score ordering- \(c_S\)
- Direct (by “name of” R) – \(c_R\)
- total price \(s^*c_S + r^*c_R\)
Combination function \(t:\[0,1]^n \rightarrow [0,1]\), monotone, i.e.
\[x_i \leq y_i \text{ implies } t(x_1, \ldots, x_m) \leq t(y_1, \ldots, y_m)\]
e.g. \(t(x_1^R, x_2^R, \ldots, x_5^R) = w_1^*x_1^R + w_2^*x_2^R + \ldots + w_5^*x_5^R\)

Random access Fagin threshold algorithm

1. **Do sorted access in parallel** to each of the m sorted lists L_i: As an object R is seen, **do random access** to the other lists to find the grade x_i^R of object R in every list L_i

Then **compute** the grade $t(R)$: If this grade is one of the k highest we have seen, then **remember** object R and its grade $t(R)$ (ties are broken arbitrarily, so that only k objects and their grades need to be remembered at any time).
Random access Fagin threshold algorithm

2. For each list \(L_i \); let \(x_i \) be the grade of the last object seen under sorted access. **Define** the threshold value

\[
\tau = t(x_1, \ldots, x_m)
\]

As soon as at least \(k \) objects have been seen whose grade

\[
t(R) \geq \tau
\]

then halt else go to 1.

3. Let \(Y \) be a set containing the \(k \) objects that have been seen with the highest grades. The **output** is then the graded set

\[
\{(R, t(R)) \mid R \in Y\}
\]

ordered by \(t(R) \):

TA is correct and instance optimal

Theorem. If the aggregation function \(t \) is monotone, then TA correctly finds the top \(k \) answers.

Proof. Assume that \(z \) was not seen, then \(x_i^z \leq x_m \) and hence
\[
 t(x_1^z, \ldots, x_m^z) \leq \tau = t(x_1, \ldots, x_m)
\]
For every \(y \) in \(Y \) we have \(t(y) \geq \tau \) therefore \(t(z) \leq t(y) \).

Theorem. Assume that the aggregation function \(t \) is monotone.
Let \(D \) be the class of all databases.
Let \(A \) be the class of all algorithms that correctly find the top \(k \) answers for \(t \) for every database and that do not make wild guesses.

Then TA is instance optimal over \(A \) and \(D \).
Proof of instance optimality of TA

Proof. Let $\mathcal{A} \in \mathcal{A}$ a $\mathcal{D} \in \mathcal{D}$. Result is $Y_{\mathcal{A}}$ and in each list L_i algorithm \mathcal{A} made d_i sequential steps, last seen score is x_i a threshold is $\tau_{\mathcal{A}}$.

\mathcal{A} has seen a objects, $\text{price}_{\mathcal{A}} \geq a^* c_S$. Put $d = \max d_i$, we have $d \leq a$.

As \mathcal{A} does not make wild guesses, so \mathcal{TA} has seen after $d^* m$ steps all object seen by \mathcal{A} and $\tau_{\mathcal{TA}} \leq \tau_{\mathcal{A}}$.

Now a crucial property: For $R \in Y_{\mathcal{A}}$ we have $t(R) \geq \tau_{\mathcal{A}}$.

Assume not, create a database \mathcal{D}', such that, instead of $d_i + 1$st object we insert record (V, x_i). As \mathcal{A} does not guess, on \mathcal{D}' runs in same way as on \mathcal{D}. Object V was not seen and result is $Y_{\mathcal{A}}$, contradiction.

Proof of instance optimality of TA

As $\tau_{TA} \leq \tau_{\mathcal{A}} \leq t(R)$,

TA stops at the latest in step d.

Price of TA computation is

$$d \cdot m \cdot c_s + d \cdot m \cdot (m-1) \cdot c_R$$

Ratio of TA and \mathcal{A} prices (use $d/a \leq 1$) is

$$\frac{dmc_s + dm(m-1)c_R}{ac_s} \leq m + m(m-1) \frac{c_R}{c_S}$$

a constant \square

Implementations and experiments

In practice can c_R/c_S be > 1000, for 5 attributes is $m(m-1) = 20$, so many improvements and heuristics are possible.

Worst case – 2 attributes – needs to visit half of data

3 attributes – $2/3$...

Object is seen in step f and in top-k certified in step c.

Depending on distribution, (e.g. exponential in collection, R. Lencses) we can have $f < 1\%$ and $c < 10\%$.

Tokaf (A. Eckhardt), P. Gursky, ...
Local preferences $f_i^u : D_{A_i} \rightarrow [0,1]$

Transform the data cube ΠD_{A_i} into $[0,1]^N$

Global preferences - monotone

Aggregation $t^u : [0,1]^N \rightarrow [0,1]$

User preference =

$t^u(f_1^u(R.A_1), f_2^u(R.A_2), \ldots, f_N^u(R.A_N))$
New user v - from list \(L_i^u \) to list \(L_i^v \) - reorder domains?
Navigate the index! New structure

New user – learn her model from rating (DP-B. Václav)
Learning parameters of Fagin’s model - definition

given r^u

find f^u_i, t^u

such that

$r^u = \underline{r^u} \mid S$? or

$\mid r^u - \underline{r^u} \downarrow S \mid < \varepsilon$? or

orders induced by

$r^u = \underline{r^u} \mid S$ coincide?

Do not contradict?

...
Learning parameters of Fagin’s model

Approximation of \(r_u \) by \(\underline{r}_u \)?

Consider \(r_u \) as classification to \(\left| \text{rng}(r_u) \right| \) classes?

Optimization? Learn the model

\[
\underline{r}_u(R) = t_u(f^u_1(R.A_1), f^u_2(R.A_2), \ldots, f^u_N(R.A_N))
\]

ANN

\[
F(x) = \sum_{i=1}^{m} \alpha_i \varphi \left(\sum_{j=1}^{N} w_{ij} x_j + b_i \right)
\]

More Alan Eckhardt
Data calculi for Fagin, Datalog, ... fuzzy logic

• Domain relational calculi! Datalog! ... RDF, all known from classical querying... fuzzify?

• Which logic? Which connectives?

• Lukasiewicz? \(\&_L(x,y) = \max\{0, x+y-1\} \)
 \[\rightarrow _L(x,y) = \min\{1, 1-x+y\} \]

• Product? \(\&_P(x,y) = x*y \)
 \[\rightarrow _P(x,y) \approx \min\{1, y/x\} \]

• Goedel? \(\&_G(x,y) = \min\{x, y\} \)
 \[\rightarrow _G(x,y) \approx y \]
Fuzzy logic? Tautologies?

\((A \to (B \to C)) \to ((A \to B) \to (A \to C))\) is not a tautology of Lukasiewicz logic

\[\to_L(x, y) = \min\{1, 1-x+y\} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(B → C)</th>
<th>(A → (B → C))</th>
<th>(A → B)</th>
<th>(A → C)</th>
<th>((A → B) → (A → C))</th>
<th>(A → (B → C)) → ((A → B) → (A → C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{4})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{3}{4})</td>
<td>(1)</td>
<td>(\frac{3}{4})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{3}{4})</td>
<td>(\frac{3}{4})</td>
</tr>
</tbody>
</table>

???
(A → (B → C)) → ((A → B) → (A → C)) is not a tautology of Lukasiewicz logic \(\rightarrow_{\text{L}}(x,y) = \min\{1, 1-x+y\} \)

Pavelka’s graded logic

Hájek’s comparative notion of truth

Datalog does not need tautologies!! No logical axioms.

Relational algebra like Goedel-Bernays set theory, ...

Fuzzy – vague, controller,... **Fuzzy as preference**
Generalize \{0,1\} to \([0,1]\)-Datalog – still challenging

• Should our rules be implications or clauses?
 • \(B \rightarrow H \equiv \lnot B \lor H\)

• should our computation be refutation or query answering?
 • \(\lnot B \lor H, \lnot H \) infer \(\lnot B\), or ?-H, \(H \leftarrow B \ldots \) ?-B

• is unification touched by this or not?
 • Fuzzy similarity? \(\rightarrow\) new type of indexes?
Fuzzy Datalog

• [0,1]-Datalog with implicative rules
• No refutation – querying = fuzzy modus pones
 \[B \rightarrow H.r,B.b \]
 \[H.f \rightarrow (b,r) \]
• Computed answer x is correct
• Correct answer y, \(\varepsilon > 0 \), \(\exists \) computed answer \(x_\varepsilon > y - \varepsilon \)
• Continuous semantics, fixpoint (GAP of Kifer Subrahmanian is not continuous)
• similarity axioms are a Datalog program
How to learn fuzzy rules? Fuzzy ILP?

- ILP assumes background knowledge B, positive examples E^+, negative examples E^-, we look for hypothesis H such that

 $$B \cup H \models E^+ \text{ and } B \cup H \not\models E^-$$

- In fuzzy case B: $B \rightarrow [0, 1]$

 E: $E \rightarrow [0, 1]$, we look for

 H: $H \rightarrow [0, 1]$, such that

 E degree matches? order matches? Doesn’t cheat?
Fuzzy as preference – not a mathematical generalization

Computed correct

Monotone
Precision, recall by degree

\[\tau(L_1, L_2) = \frac{n_c - n_d}{1/2 \times n \times (n - 1)} \]
New problems

• Are R and r^u **monotonizable**? Wrts to data indexes, measures

• Having R and set of users U and rating **monotone**
 – ? \exists **ordering** of domains, local preferences are **simple** (left/right shoulder, peak, valley)?

• Small training data, fast response e.g. < 0.5 sec.

• Experiments repeatable, reusable, portable,…

• Improvement from the point of view of
 – Software Engineering, Database, …
 – Human user
GACR project Web Semantization P202/10/0761

Change architecture? No Trisolda – Bobox? Whole .cz?
Where are data from? Where is user model from?

• Semantized web data
 • Known ontology
 - Web information extraction (D. Maruščák)
 - WIE, annotation from texts (J. Dědek)
 • Unknown ontology
 - Ontology (microformats) user assisted (social network), store
 Semantized data (semantization rules) on server - D. Fišer

• Learning user preference (ordering)
 • registered, known basket, collaborative, ...
 • explicit rating (A. Eckhardt)
 • implicit behaviour (L. Peška)
 • filtering (I. Lašek)

what next?
Product Development at Lean Startup

Unit of Progress: Validated Learning About Customers ($$$)

Customer Development

Problem: unknown

Solution: unknown

Hypotheses, Experiments, Insights

Data, Feedback, Insights

User Stories

Architectural Spike

Release Planning

Iteration

Acceptance Tests

Small Releases
• Raise cooperation of universities and companies
 • Building research teams
 • building start-up teams
 • human experiments on prototypes
 • creation of human preference golden standards

ICT-2011.1.5 Networked Media and Search Systems
Call identifier: FP7 - ICT-2011.1.5

• Project proposal participation
 • especially with our social network
professors from Saarbruecken who teach DB or IR and have projects on XML

drama with three women making a prophecy to a British nobleman that he will become king

the woman from Paris whom I met at the PC meeting chaired by Raghu Ramakrishnan

→ “Semantic Search”:
 • exploit structure and annotations in the data
 • exploit background knowledge (ontologies/thesauri + statistics)
 • connect/join/fuse information fragments

XML-IR Example (1)

Which professors from Saarbruecken (SB) are teaching IR and have research projects on XML?

XML-IR Example (2)

Need to combine DB and IR techniques with logics, statistics, AI, ML, NLP for ranked retrieval

// Professor [/* = „Saarbruecken“]
// Course [/* = „IR“]
// Research [/* = „XML“]
Conclusions, future work, problems, plans ...

- Problems, use-cases, models, algorithms, prototypes, benchmarks, experiments and measures, ...
- Top-k for XML (do we need RDF(S), OWL, ...?)
 - Product pages
 - Textual resources
 - Unknown schema, location, machine readability
 - Training (experts, users), automation
 - Domain dependent? Domain independent?
- Or, enforce by law, government, community, third party solution via web information extraction?
Questions, comments,....

Thank you