
Linked Data Indexing Methods: A Survey?

Martin Svoboda and Irena Mlýnková

Department of Software Engineering, Charles University in Prague
Malostranske namesti 25, 118 00 Prague 1, Czech Republic

Contact e-mail: {svoboda,mlynkova}@ksi.mff.cuni.cz

Abstract. Documents on the contemporary Web are based especially
on HTML formats and, therefore, it is rather difficult to retrieve hidden
structured information from them using automated agents. The concept
of Linked Data based primarily on RDF data triples seems to success-
fully solve this drawback. However, we cannot directly adopt the existing
solutions from relational databases or XML technologies, because RDF
triples are modelled as graph data and not relational or tree data. De-
spite the research effort in recent years, several questions in the area
of Linked Data indexing and querying remain open, not only since the
amount of Linked Data globally available significantly increases each
year. This paper attempts to introduce advantages and disadvantages
of the state-of-the-art solutions and discuss several issues related to our
ongoing research effort – the proposal of an efficient querying framework
over Linked Data. In particular, our goal is to focus on large amounts of
distributed and highly dynamic data.

Keywords: Linked Data, RDF, indexing, querying, SPARQL.

1 Introduction

The majority of documents on the contemporary Web are based primarily on
HTML formats. Although these documents often contain hidden structured and
interlinked information, it is quite difficult for automated agents to retrieve such
information. Therefore, an idea of Linked Data appeared in order to extend the
Web of Documents towards the Web of Data [4].

Linked Data do not represent any particular standard; we only talk about
a set of recommended principles and techniques, which lead to the publication
of data in a way more suitable for their automated processing. First, each real-
world entity should be described by a unique URL identifier. These identifiers
can be dereferenced by HTTP to obtain information about the given entities.
And, finally, these entity representations should be interlinked together to form
a global open data cloud – the Web of Data.

Even though there are several particular ways, the most promising is prob-
ably the RDF (Resource Description Framework) [15] standard, where data are

? This work was supported by the Charles University Grant Agency grant 4105/2011,
the Czech Science Foundation grant P202/10/0573 and the grant SVV-2011-263312.



modelled as triples conforming to the concept of subject-predicate-object. An
alternative way to view these triples are graphs, where vertices correspond to
subjects and objects, edges represent the triples themselves and are labelled by
predicates. At the implementation level we can publish RDF triples in a form of
RDF/XML [3] syntax and along the data we can also publish RDFS [6] schemata
or OWL [16] ontologies restraining the allowed content of such RDF data.

In recent years, a significant effort was made not only in a theoretical research,
but also in the amount of Linked Data globally available. However, since RDF
triples are modelled as graphs, we cannot directly adopt existing solutions from
relational databases and XML [5] technologies. Thus, the area of Linked Data
includes many open problems, starting from application architecture questions
and ending, e.g., with user interaction paradigm.

Objectives. The purpose of this paper is to provide a survey of the area of
Linked Data indexing techniques. It is clear that indexing is tightly connected
with storing and querying, however, we will only focus on state-of-the-art solu-
tions in the area of indexing. We will mutually compare the existing approaches,
discuss general issues and important aspects of a proposal of index structures
supporting effective and efficient querying, but we will not provide any perfor-
mance comparisons. Thus, this paper should give the reader the basic insight
into the area of Linked Data indexing, its various ideas and principles, but due
to the lack of space, we are not able to go to detail.

Outline. In section 2 we discuss issues and dimensions that need to be con-
sidered in the comparison of Linked Data indexing methods. Section 3 gives the
thorough description of the existing approaches in this area, while in Section 4 we
provide an overall summary of these approaches and discuss found observations
and open questions. Finally, Section 5 concludes this paper.

2 Analysis

Whereas the logical model of RDF data is based on graphs, standard databases
work with relational tables and semi-structured XML documents can be viewed
as trees. Despite these differences, we can still find inspiration in these two well
established areas. In this section, we outline a number of issues that need to
be considered when proposing new indexing methods. We need to consider at
least architecture, storage and querying aspects. Next, we introduce a set of
dimensions using which we can compare and classify the existing approaches.

2.1 General Issues

Architecture. The fundamental question of each querying system is the mutual
relationship between physical storages, index structures and querying capabili-
ties. It is clear that querying without data has no sense, and vice versa. In other
words, all presented issues can only hardly be considered separately. First, we
need to discuss what querying constructs we need in a particular application,
i.e. what expressive power we require or even which querying language we want



to choose. Then, the storage itself and index structures should be proposed in
the way capable to effectively and efficiently provide results of queries.

Since the concept of Linked Data emerged to support the idea of the Web of
Data, we cannot ignore its main feature based on data distribution. Having no
central points in the infrastructure would be worth, but it seems that without at
least some local knowledge, the querying over the Web would not be sufficiently
fast. If we want to evaluate queries only via online accessing remote data sources,
we are assured that we obtain accurate and up-to-date results, but we cannot
neglect the amount of data needed to be transferred and the required time.

On the other hand, local approaches may enable more efficient query process-
ing, but we need to deal with large amounts of data and their ageing. It seems
that a sort of federated and integrated querying framework [21] could be a good
way to overcome the mentioned issues. Nevertheless, we need to consider several
reasons that may prevent maintaining local data copies. Besides technical ones,
there can also be legal reasons such as copyrights.

Storage. In standard relational databases, data are stored in tables and
index structures have only an auxiliary role to support efficient query evaluation.
The important thing is that no data are stored in indices themselves, since they
only contain duplicated data fragments or derived statistics. In the area of RDF
storing, we can even find indexing approaches [2] which are completely isolated
from the physical database layer, i.e. a query can be evaluated only using the
index structure itself.

Although native approaches for querying RDF data could generally repre-
sent more efficient solutions, the mentioned relational databases [1] benefit from
decades of experience and research results. We can come across three basic ways
how to store RDF data in relational tables. The first possible solution is based
on one big table with three columns for subjects, predicates and objects. The
second approach is based on a set of tables, where values in the first column al-
ways identify subjects and values in remaining columns correspond to objects of
predicates determined by these columns (we group several predicate and object
pairs for a given subject). Finally, the third approach has a separate table for
each predicate, always with 2 columns for subject and object pairs.

Querying Language. According to [7] we can divide RDF querying lan-
guages into three basic layers: syntactic, structural and semantic. Probably the
most widespread language SPARQL [20] represents the structural querying. Hav-
ing a query formulated as a graph pattern with fixed values and/or variables,
the query processor attempts to find all matches of this graph pattern against
the entire data graph stored in the database.

The important position has also the concept of fulltext querying based on
keywords. Although we may require such functionality even in local querying sys-
tems, these techniques play the main role in Web search engines. The important
feature of this model is that we are usually not interested in which particular
component (subject, predicate, object) the specified keyword should exactly be
located, whereas in graph querying models the value equality testing actually
needs to consciously distinguish between particular triple particles.



After a submitted query is parsed and transformed into an internal repre-
sentation, we need to find the most suitable query evaluation plan. In this sense
a special position in query optimization techniques has the join ordering. It is
quite interesting that we can use similar ideas to the nested loop algorithm from
relational databases. However, there are other aspects that need to be consid-
ered. The problem is not only that we usually have to rely on heuristics, since we
are not able to consider all possible plans, but we also use imprecise statistics.

2.2 Classification of Approaches

Existing approaches can be compared in many different ways. First of all, we
can talk about the architecture, which is primarily derived from the scope of
processed data. We distinguish between local, distributed and global approaches.

If the index structures themselves allow efficient insertions, updates and dele-
tions, we talk about dynamic structures, otherwise about static ones. These
structures may serve for indexing data, or only statistics about them. Anyway,
each system focuses on different data units: triples conform to standard RDF
triples, quads are extended with the context, whereas in case of sources we work
with semantic documents or other files and services.

Approaches may also be compared by querying languages, their expressive
power or allowed constructs. Although there are syntactic and semantic layers,
we only focus on the structural one. In this case, queries can be based on fulltext
or graph patterns. Anyway, the querying model is closely connected with the
model of index structures. Thus, we can index keywords, triples, quads, trees,
paths or other areas. Indexing approaches also differ in access patterns: universal
treat subject, predicate and object components equally, whereas dedicated not.

3 Approaches

Not all possible combinations derived from introduced dimensions make sense.
Nevertheless, we are able to derive three main categories of existing approaches:
local querying systems, distributed source selection techniques and global search-
ing engines. The description of existing approaches is the subject of this section.
For simplification, we will use abbreviations S, P , O and C for subject, predicate,
object and context quad particles respectively.

3.1 Local Approaches

Quad Index. Index structures proposed by Harth and Decker [11] enable query-
ing of local data quads with context. These structures involve Lexicon (an in-
verted list for keywords and two-way translation maps for term identifiers based
on B+-trees) and Quad indices (B+-trees for SPOC, POC, OCS, CSP , CP ,
OS orderings) allowing to query in all 16 access patterns. Despite data quads
themselves, these indices also contain statistics about data, e.g. quad (s, p, 0, 0)
in SPOC index represents the number of all quads with given s and p values.



Vertical Partitioning. Abadi et al. [1] proposed a model of storing RDF
triples in relational databases in a way of a separate table for each predicate
(with one column for subjects, second for objects). This implies that we are able
to store pre-computed paths. Similarly to the previous approach, the authors
use the translation of strings into identifiers.

RDF-3X Engine. The core of the stream processor RDF-X proposed by
Neumann and Weikum [17] is based on six B+-tree indices for all SPO, SOP ,
OSP , OPS, PSO and POS access patterns. Additionally, they also use indices
with statistics (S, P , O, SP , PS, PO, OP , SO and OS projections) and selec-
tivity histograms and statistics for pre-computed path or star patterns.

Sextuple Index. The idea of HexaStore approach by Weiss et al. [27] is
based on similar SPO, SOP , OSP , OPS, PSO and POS index structures,
however, these are implemented as ordered nested lists. All these lists contain
only identifiers instead of strings, again.

Matrix Index. BitMat is an approach proposed by Atre et al. [2]. The index
model is based on a matrix with three dimensions for S, P and O values (terms
are translated to identifiers, which are used as matrix indices). Each cell contains
a bit value equal to 1 if and only if the given triple is stored in the database,
otherwise value 0. The index is organized as an ordinary file with all SO, OS,
PO and PS slices stored using a bit run compression over individual slice rows.

Path Index. An index structure for path queries proposed by Liu and
Hu [14] is inspired by traditional information retrieval methods for processing
texts. Its main idea is based on suffix arrays, using which we are able to efficiently
index paths as sequences of fixed S, P and O values.

GRIN Index. Udrea et al. [26] introduced a model based on splitting data
graphs into subgraph areas that are described by conditions limiting their con-
tent. The idea is derived from a metric defined on URIs and literals (e.g. a
minimal number of edges in a data graph between a given pair of values). The
index structure itself is a balanced binary tree, where internal nodes represent
mentioned areas and leaf nodes store data triples conforming to these areas.

Structure Index. The last presented local approach is a parameterised
index introduced by Tran and Ladwig [25]. Their model is based on bisimilarity
relations, putting in a relation such two vertices of the data graph that share the
same outgoing and ingoing edges (reflecting only predicates). Vertices from the
same equivalence class have the same characteristics and, therefore, prompted
queries can first be evaluated over these classes to prune required data.

3.2 Distributed Approaches

The purpose of the following approaches is to work with distributed sources and
provide transparent querying over their data.

Repository Index. An index by Stuckenschmidt et al. [22] is inspired by
object databases. It captures statistics about paths and enables querying over
them using tree pattern queries with fixed values of predicates. The index struc-
ture itself is hierarchical (for each path it also contains all its subpaths).



Federated Querying. Quilitz and Leser [21] proposed a system for trans-
parent integrated querying over distributed and autonomous sources. The core of
this approach is a language for description of distributed sources, in particular,
data triples they contain, together with other source characteristics.

Data Summaries. The purpose of a data summary index by Harth et al. [12]
is to enable the source selection over distributed data sources. Data triples are
modelled as points in a 3-dimensional space (S, P , and O coordinates are de-
rived by hash functions). The index structure is a QTree based on standard
R-Trees. Internal nodes act as minimal bounding boxes for nested nodes, leaf
nodes contain statistics about data sources, not data triples themselves.

3.3 Global Approaches

Finally, we briefly outline three global searching approaches. All of them are
primarily inspired by traditional information retrieval methods.

Swoogle. The first system was proposed by Ding et al. [9]. Its objective is to
serve as a searching engine over semantic documents, both data and ontologies.

SWSE. The purpose of SWSE by Harth et al. [10] is to provide a system
for global searching over quads (RDF triples with their context). The querying
focuses not only on keyword matching, but it also supports concept filtering.

Sindice. Oren et al. [18] introduced a global engine for searching seman-
tic documents on the Web, allowing to query via keywords, inverse functional
properties and resource URIs.

4 Summary

Summarising approach descriptions in the previous section, we can outline sev-
eral observations and aspects that we consider as important to be discussed
during the proposal of new techniques for indexing Linked Data. We have also
identified several areas we consider as not yet sufficiently investigated.

4.1 Approaches Comparison

It seems that the existing approaches represent efficient proposals for querying
RDF data. However, the majority of existing approaches have several limitations
or assumptions which cause their difficult usage in the general case. Moreover,
their efficiency often highly depends on allowed querying constructs, but it is
not clear, what characteristics real-world data and queries really have.

In Table 1 we provide a brief and simplified overview of all existing approaches
we have listed in this paper. Besides different intended purposes of these pro-
posals, we can especially put the attention to the comparison of data, query and
index models behind them.

Despite the ideas of particular solutions are sometimes very different, we can
find at least the following common aspects.



Approach name
Scope Data Query Index

Basic approach description
type items model model

Local Querying Methods

Harth 2005
Local Quads

Graphs Quads Lexicon using inverted lists
Quad index [11] YARS QL Text Quad indices using B+-trees

Abadi 2007
Local Triples

Graphs
Paths

Table for each predicate
Partitioning [1] SQL Standard RDBMS indices

Neumann 2008
Local Triples

Graphs
Triples

Triple, double, single B+-trees
RDF-3X [17] SPARQL Histograms and path statistics

Weiss 2008
Local Triples

Graphs
Triples

Nested ordered lists
Hexastore [27] SPARQL Dictionary encoding of URIs

Atre 2010
Local Triples

Graphs
Triples

Slices of 3D matrix
BitMat index [2] SPARQL Bit run compression of rows

Liu 2005
Local Triples

Paths
Paths

Paths as sequences of terms
Path index [14] SPARQL Stored using suffix arrays

Udrea 2007
Local Triples

Graphs
Circles

Unlimited paths querying
GRIN index [26] SPARQL Binary tree over graph circles

Tran 2010
Local Triples

Graphs
Graphs

Contraction to extensions
Struct. index [25] SPARQL Sets of in/outgoing predicates

Distributed Querying Methods

Stucken. 2004
Dist. Sources

Trees
Paths

Paths as predicate sequences
Repositories [22] SeRQL Hierarchical paths index

Quilitz 2008
Dist. Sources

Graphs
Services

Service descriptions index
DARQ [21] DARQ Capabilities and selectivity

Harth 2010
Dist. Sources

Graphs
Boxes

Triples hashing to 3D points
Summaries [12] SPARQL Q-tree index with buckets

Global Searching Methods

Ding 2004
Global Files Fulltext Text

Semantic web documents
Swoogle [9] Keywords and n-grams

Harth 2007
Global Quads Fulltext Text

Global quads querying
SWSE [10] Keywords, IFP and concepts

Oren 2008
Global Files Fulltext Text

Invertes lists to sources
Sindice [18] Keywords, URI and IFP

Table 1. Comparison of existing approaches



Compression. The shared idea of the majority of indexing methods is the
way of storing string values of URIs and literals, since there is a high probability
that strings may have multiple occurrences in the database. Therefore, it seems
very effective to store these strings only once in a special storage, assign them
unique integer identifiers, and use them in RDF triples instead of the original
terms. As a consequence, frequently executed value equality tests during the
query evaluation may then be executed much faster.

Data Pruning. Efficient systems also support the query evaluation via a set
of optimizations. We can propagate data filtering selections as close as possible
to their fetching, or we can perform data pruning before the phase of joining.
In case of distributed approaches, we focus on the problem of source selection,
i.e. to access data only of those remote sources that are relevant to the query.
Generally, we want to avoid processing of irrelevant data whenever possible.

4.2 Open Problems

According to the discussed issues and the comparison of the existing approaches,
we can formulate the following open problems in the area of indexing.

Architecture. Finding an appropriate compromise between processing local
or distributed data forms one of the most important questions. Maintaining local
copies of data may benefit from convenient conditions for more efficient query
evaluation; however, we are not always able or allowed to gather the data under
our control. The second approach is based on accessing distributed data on-the-
fly using link traversal. This method suffers from transfer requirements, although
it ensures work with up-to-date data.

Scalability. Even though existing approaches work with large sets of data,
experiments performed using various sets of data, queries and prototype imple-
mentations of discussed solutions imply that we are still not able to sufficiently
flatten performance of such approaches and the explosion of the Web of Data
size. While we could find about 10 globally important data sources with 920 mil-
lion triples and 150 thousand links in 20071, these numbers increased to about
200 important sources, 25 billion triples with 395 million links in 20102.

Dynamicity. Although experiments [8] consider the Web of Documents, it
seems that data on the Web of Data tends to aging too. Moreover, we especially
need not only to handle simple data modifications, but also deal with broken
links and attempt to anticipate or correct them. Achieving consistently con-
nected data [19] is necessary, when we maintain local data copies or summaries.
Unfortunately, the problem is that index structures are often static and do not
allow any further modifications like inserts, updates or deletes.

Quality. The increasing number of globally available data on the Web also
causes issues of data quality and trust. Especially in the context of global search
engines we need to propose accurate metrics or other techniques for determin-
ing relevance of particular query answers. For this purpose we can utilize data
provenance or even knowledge and relationships from social networks [13].

1 http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData/
2 http://www.ckan.net/



5 Conclusion

Recent years show that Linked Data became a suitable way of building the Web
of Data that can be automatically processed without any special effort, such as
without complicated information retrieval from standard HTML pages on the
contemporary Web of Documents.

Since Linked Data in a form of the RDF standard represent graph data, we
cannot directly adopt existing research results from areas of relational databases
and XML technologies. And since the amount of Linked Data globally available
still grows, several questions need to be solved to offer efficient systems.

The purpose of this paper was to provide an overview of existing Linked Data
indexing approaches. We discussed issues related to the proposal of new indexing
methods, introduced a set of dimensions for comparing existing solutions, and
also identified aspects that can still be considered as open problems.

This survey is connected with our ongoing research effort [23] that should
result in a proposal of an entire framework for efficient and effective querying
of Linked Data. In particular, we want to deal especially with the following as-
pects: data distribution, scalability, dynamicity and quality. Although existing
approaches show promising ways of solving our problem, the combination of all
named assumptions remains unsolved. For this purpose we not only want to pro-
pose novel techniques together with the prototype implementation, but we also
want to harness characteristics of real-world data detected using Analyzer [24],
our framework for robust analyses of documents on the Web.

References

1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web
Data Management Using Vertical Partitioning. In: Proc. of the 33rd Int. Conf. on
Very Large Data Bases. pp. 411–422. VLDB ’07, VLDB Endowment (2007)

2. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix ”Bit” loaded: A Scalable
Lightweight Join Query Processor for RDF Data. In: Proc. of the 19th Int. Conf.
on World Wide Web. pp. 41–50. WWW ’10, ACM, New York, NY, USA (2010)

3. Beckett, D.: RDF/XML Syntax Specification (Revised) (2004), http://www.w3.
org/TR/rdf-syntax-grammar/

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story so far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

5. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J.:
Extensible Markup Language (XML) 1.1 (Second Edition) (2006), http://www.

w3.org/TR/xml11/

6. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema
(2004), http://www.w3.org/TR/rdf-schema/

7. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: The Semantic Web – ISWC
2002. LNCS, vol. 2342, pp. 54–68. Springer Berlin / Heidelberg (2002)

8. Cho, J., Garcia-Molina, H.: The Evolution of the Web and Implications for an
Incremental Crawler. In: Proc. of the 26th Int. Conf. on Very Large Data Bases.
pp. 200–209. VLDB ’00, Morgan Kaufmann Publishers Inc., USA (2000)



9. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: A Search and Metadata Engine for the Semantic Web.
In: Proceedings of the 13th ACM Int. Conference on Information and Knowledge
Management. pp. 652–659. CIKM ’04, ACM, New York, NY, USA (2004)

10. Harth, A., Hogan, A., Delbru, R., Umbrich, J., O’Riain, S., Decker, S.: SWSE:
Answers Before Links. In: Proc. of the Semantic Web Challenge 2007 co-located
with ISWC 2007 + ASWC 2007. vol. 295, pp. 136–144. CEUR-WS.org (2007)

11. Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the
Web. In: Third Latin American Web Congress, 2005. LA-WEB 2005. IEEE (2005)

12. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data
Summaries for On-demand Queries over Linked Data. In: Proc. of the 19th Int.
Conf. on World Wide Web. pp. 411–420. WWW ’10, ACM, NY, USA (2010)

13. Knap, T., Mlynkova, I.: Quality Assessment Social Networks: A Novel Approach
for Assessing the Quality of Information on the Web. In: QDB. pp. 1–10 (2010)

14. Liu, B., Hu, B.: Path Queries Based RDF Index. In: Proceedings of the First
International Conference on Semantics, Knowledge and Grid. pp. 91–93. IEEE
Computer Society, Los Alamitos, CA, USA (2005)

15. Manola, F., Miller, E.: RDF Primer (2004), http://www.w3.org/TR/rdf-primer/
16. McGuinness, D.L., Harmelen, F.v.: OWL Web Ontology Language: Overview

(2004), http://www.w3.org/TR/owl-features/
17. Neumann, T., Weikum, G.: RDF-3X: A RISC-style Engine for RDF. Proc. VLDB

Endow. 1, 647–659 (August 2008)
18. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:

Sindice.com: A Document-oriented Lookup Index for Open Linked Data. Interna-
tional Journal of Metadata, Semantics and Ontologies 3(1), 37–52 (2008)

19. Popitsch, N.P., Haslhofer, B.: DSNotify: Handling Broken Links in the Web of
Data. In: Proceedings of the 19th International Conference on World Wide Web.
pp. 761–770. WWW ’10, ACM, New York, NY, USA (2010)

20. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2008),
http://www.w3.org/TR/rdf-sparql-query/

21. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL.
In: The Semantic Web: Research and Applications. LNCS, vol. 5021, pp. 524–538.
Springer Berlin / Heidelberg (2008)

22. Stuckenschmidt, H., Vdovjak, R., Houben, G.J., Broekstra, J.: Index Structures
and Algorithms for Querying Distributed RDF Repositories. In: Proc. of the 13th
Int. Conf. on World Wide Web. pp. 631–639. WWW ’04, ACM, NY, USA (2004)

23. Svoboda, M., Mlynkova, I.: Efficient Querying of Distributed Linked Data. In:
Proceedings of the 2011 Joint EDBT/ICDT Ph.D. Workshop. pp. 45–50. PhD ’11,
ACM, New York, NY, USA (2011)

24. Svoboda, M., Starka, J., Sochna, J., Schejbal, J., Mlynkova, I.: Analyzer: A Frame-
work for File Analysis. In: Database Systems for Advanced Applications. LNCS,
vol. 6193, pp. 227–238. Springer Berlin / Heidelberg (2010)

25. Tran, T., Ladwig, G.: Structure Index for RDF Data. In: Workshop on Semantic
Data Management (SemData@VLDB) 2010 (2010)

26. Udrea, O., Pugliese, A., Subrahmanian, V.S.: GRIN: A Graph Based RDF Index.
In: Proceedings of the 22nd National Conference on Artificial Intelligence – Volume
2. pp. 1465–1470. AAAI Press (2007)

27. Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic
Web Data Management. Proc. VLDB Endow. 1, 1008–1019 (August 2008)


