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Lecture Outline

Graph databases

* Introduction
Neodj
¢ Data model: property graphs
* Cypher query language
= Read, write, and general clauses




Graph Databases

Data model
e Property graphs
= Directed / undirected graphs, i.e. collections of ...

— nodes (vertices) for real-world entities, and
— relationships (edges) among these nodes

= Both the nodes and relationships can be associated
with additional properties

Types of databases
¢ Non-transactional = small number of large graphs

* Transactional = large number of small graphs




Graph Databases

Query patterns
» Create, update or remove a node / relationship in a graph

Graph algorithms (shortest paths, spanning trees, ...)

General graph traversals

Sub-graph queries or super-graph queries

Similarity based queries (approximate matching)




Neodj Graph Database

@yneoy)



Neodj

Graph database
¢ https://neodj.com/

Features

= Open source, massive scalability, high availability,
fault-tolerant, master-slave replication, ACID transactions, ...

Developed by Neo Technology
* Implemented in Java

Operating systems: cross-platform

Initial release in 2007
= Version we cover is 4.4.10 (August 2022)


https://neo4j.com/

Data Model

Dataspace structure

Instance (— database) — single graph

Property graph = directed labeled multigraph
» Collection of nodes (vertices) and relationships (edges)
Node
¢ Unique identity
= Internal, should not be used directly

* Set of labels (zero or more)

= Allow for node categorization via user-defined types
= E.g.: ACTOR, MOVIE, ...

e Property map = set of individual properties
= Allow to associate a given node with additional data



Data Model

Relationship
* Unique identity
= Once again, internal only

Direction (immutable and compulsory)
= Relationships are traversable in both directions

— There is no impact on efficiency
— Directions can also be entirely ignored when querying

Start node and end node
= Can be the same, i.e., loops are allowed as well

Exactly one type (immutable)
= E.g.: PLAY, ...

e Property map



Data Types

Structural types
¢ Node, Relationship
* Path = sequence of interleaved nodes and relationships
Property types
e String (e.g., "Samotari")
= Sequence of Unicode characters

— Enclosed preferably by double quotes
— Standard backslash escaping (\", \n, \\, ...)

Integer (e.g., 165, 0xA5, 00245)
Float
Boolean (literals true and false)



Data Types

Composite types
o List = ordered collection of values
= Values can be anything

— lLe., all types are permitted (property, structural, composite)
— And so lists can contain other embedded lists, maps, ...

= Lists can be heterogeneous

~@ — @~
=

» Eg.: [ 2015, "Samotari", [ 2020 ], 2015 ]




Data Types

Composite types (cont’d)
* Map = unordered collection of key-value pairs
= Key is a string, unique in a given map
= Value can be anything, again
= Maps can be heterogeneous, too

@»f ®-
) )

N

H@\’

= E.g.:
Property map = restricted version of a general map

* Used for node and relationship property maps

= Only atomic values or homogeneous arrays of atomic values
of any property type are permitted for top-level properties
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Sample Data

Sample graph with movies and actors

CREATE

// Movies
(m1:MOVIE { id: "vratnelahve", title: "Vratné lahve", year: 2006,

rating: 76, language: "cs", genres: [ "comedy" ] }),
(m2:MOVIE { id: "samotari", title: "Samota¥i", year: 2000,

rating: 84, language: "cs", genres: [ "comedy", "drama" ] }),
(m3:MOVIE { id: "medvidek", title: "Medvidek", year: 2007,

rating: 53, language: "cs", genres: [ "comedy", "drama" ] }),
(m4:MOVIE { id: "stesti", title: "St&sti", year: 2005,

rating: 72, language: "cs", genres: [ "drama" ] }),
// Actors
(al:ACTOR { id: "trojan", name: "Ivan Trojan", year: 1964 }),
(a2:ACTOR { id: "machacek", name: "Ji¥i Machalek", year: 1966 }),
(a3:ACTOR { id: "schneiderova", name: "Jitka Schneiderova", year: 1973 }),
(a4:ACTOR { id: "sverak", name: "Zden8k Sv&rak", year: 1936 }),
(ab5:ACTOR { id: "vilhelmova", name: "Tatiana Vilhelmova", year: 1978 }),




Sample Data

Sample graph with movies and actors (cont’d)

// Vratné lahve
(m1)-[p1:PLAY {
// Vratné lahve
(m1)-[p2:PLAY {
// Samotari -->
(m2)-[p3:PLAY {
// Samotafi -->
(m2) - [p4:PLAY {
// Samotafi -->
(m2)-[p5:PLAY {
// Medvidek -->
(m3)-[p6:PLAY {
// Medvidek -->
(m3)-[p7:PLAY {

—--> Ji¥i Machacek

role: "Robert Landa" }]->(a2),
--> Zdenék Sveérak

role: "Josef Tkaloun" }]->(a4),
Ivan Trojan

role: "Ond¥ej" }]1->(al),

Ji¥i Machacek

role: "Jakub" }]->(a2),

Jitka Schneiderova

role: "Hanka" }]->(a3),

Ivan Trojan

role: "Ivan" }]->(al),

Jiri Machéacek

role: "Jirka" }]->(a2)




Neodj Interfaces

Database architecture
e Client-server
e Embedded database
= Directly integrated within your application

Neodj drivers

e Official: Java, .NET, JavaScript, Python

e Community: C, C++, PHP, Ruby, Perl, R, ...
Cypher shell

* Interactive command-line tool
Query patterns

e Cypher query language, Traversal framework






Cypher

Cypher
* Declarative graph query language
= Allows for expressive and efficient querying and updates

* Based on sub-graph pattern matching, similarly as SPARQL
= Patterns are expressed using ASCII-Art inspired syntax

— Circles () for nodes
— Arrows <--, -—, ==> for relationships

* Each query is evaluated to a solution sequence (table)
= Ordered collection of individual solutions (matching subgraphs)
Chaining of clauses
* Not only individual clauses can be used repeatedly...
* ...they can also be (almost arbitrarily) chained together
= Intermediate result of one clause is passed to the following one

NDBIO50: Query Languages Il | Lecture: Neodj | 21. 5. 2024

16



Sample Query

Names of actors who played in Medvidek movie

MATCH (m:MOVIE)-[:PLAY]->(a:ACTOR)
WHERE m.title = "Medvidek"
RETURN a.name, a.year
ORDER BY a.year

m a
(medvidek) (trojan) — Ivan Trojan 1964
(medvidek) | (machacek) Jiri Machacek 1966




Clauses and Subclauses

Read clauses
e MATCH — describes graph pattern to be searched for
= WHERE — adds additional filtering constraints
Write clauses
e CREATE, DELETE, SET, REMOVE
= Creates / deletes nodes / relationships / labels / properties
General clauses
e RETURN — defines what the query result should contain
= ORDER BY, SKIP,and LIMIT subclauses

e WITH - constructs auxiliary intermediate query result
= ORDER BY, SKIP,LIMIT, and also WHERE



Path Patterns



Path Patterns

Node pattern
* Describes one data node and conditions it must satisfy
= Eg.: (), (:ACTOR { name: "Ivan Trojan" }),..
Relationship pattern
* Describes one data relationship and conditions it must satisfy
= E.g.: O--0, (:MOVIE)-[:PLAY]->(:ACTOR), ...
Path pattern
e Describes one data path to be found
= Via a sequence of interleaved node and relationship patterns

" —



Node Patterns

Node pattern
* Describes one data node to be matched
= When inner conditions are provided, they must all be satisfied

O am - O-@ - @

e Variable
= Makes a given node accessible in subsequent query fragments

— l.e., for selection in WHERE conditions, projection in RETURN
clauses, alignment with other node patterns, ...
— Such a thing would otherwise be impossible

= Eg.: (m)




Node Patterns

Node pattern (cont’d)
¢ Labels condition

= Set of zero or more labels can be provided
= Data node to be matched then...

— Must have at least all the specified labels
— lLe., there may also be other, but these are compulsory

= E.g.: (m:MOVIE)
¢ Property map condition
= Data node to be matched...

— Must have at least all the specified properties
— lLe., they are present and have identical values
— Note that mutual order of such properties is unimportant

" E.g.: (m:MOVIE { title: "Medvidek", year: 2007 })



Relationship Patterns

Relationship pattern

* Describes one data relationship to be matched

= When the direction condition is provided, it must be satisfied
= When inner conditions are given, they must also be satisfied

L:.J [t pae e} L:.J

¢ Direction condition
= Data relationship to be matched...

— Must have the same direction
— l.e., ——> for outgoing direction or <-- for incoming
— When -~ is used, direction is ignored



Relationship Patterns

Relationship pattern (cont’d)

O e \'@”Pj/ ’
{

s s O

e Variable

= Allows us to access a given relationship later on

* Eg.: O-[r]->0




Relationship Patterns

Relationship pattern (cont’d)
* Type condition

= Set of zero or more types can be provided
= Data relationship to be matched then...

— Must have one of the enumerated types
" E.g.: O-[r:PLAY]->()

* Property map condition
= Data relationship to be matched...
— Must have at least all the specified properties

* Eg.: O-[r:PLAY { role: "Jakub" }1->()




Relationship Patterns

Relationship pattern (cont’d)
e Variable length mode
= When activated, paths of arbitrary lengths can be found

— Otherwise (i.e., by default), one relationship pattern will be
matched by exactly one data relationship

= Length condition ranges: *, *4, 2. .6, *. .6, *2. .

@
S ——

= Each data relationship on the path must...

— Satisfy all the involved conditions (direction, type, properties)
» Eg.: O-[r:FRIEND *..2]-()

— If variable is introduced, it then references the whole path




Graph Patterns

Relationship uniqueness requirement

* One data node may match multiple node patterns at once
= Eg.: (a) (b)
— It may happen that both a and b will actually be the same node
— However, only when distinct data relationships were used...

* |.e., one data relationship cannot be matched repeatedly
Node pattern alignment
* Intentional alignment of nodes (not relationships) is possible
= Simply by using the same shared variables
e Eg.: (a) (a)
General graph pattern
e Graphs can be decomposed into individual path patterns

= Uniqueness requirement / shared variables work the same way
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Read Clauses



Match Clause

MATCH clause

* Allows to search for sub-graphs of the data graph that match
the provided graph pattern

= Solution sequence is produced, each variable has to be bound

e Natural join is used on the previous result when chaining

Tam P ﬂ»@»f _W
~

N
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* WHERE condition
= Only solutions satisfying a given condition are preserved



Match Clause: Example

Names of actors who played with Ivan Trojan in any movie
* Notice that /van Trojan himself is not included in the result
= Because of the uniqueness requirement

MATCH (i:ACTOR)<-[:PLAY]-(m:MOVIE)-[:PLAY]->(a:ACTOR)
WHERE (i.name = "Ivan Trojan")
RETURN a.name

MATCH (i:ACTOR { name: "Ivan Trojan" })
<-[:PLAY]-(m:MOVIE)-[:PLAY]->
(a:ACTOR)
RETURN a.name

i m a
(trojan) | (samotari) (machacek) _ "Jifi Machacek"
(trojan) | (samotari) (schneiderova) "Jitka Schneiderova"
(trojan) | (medvidek) (machacek) "Jiri Machacek"




Match Clause: Example

Names of actors who played with Ivan Trojan in any movie (cont’d)
* Uniqueness requirement is not applied across clauses
= And so internal identities must be used to exclude Ivan Trojan

MATCH (i:ACTOR { name: "Ivan Trojan" })<-[:PLAY]-(m:MOVIE)
MATCH (m:MOVIE)-[:PLAY]->(a:ACTOR)

WHERE (i <> a)
RETURN a.name

m i
(vratnelahve) (machacek)
i m (vratnelahve) (sverak)
(trojan) (samotari) X g::z::;; (trojan)
(trojan) | (medvidek) -
(medvidek) (trojan)
(medvidek)




Search Conditions

WHERE subclause conditions

* Only solutions satisfying a given condition are preserved

= Evaluated directly during the matching phase (not after it)
* Possible conditions

= Comparisons

= NULL testing predicate

= |N predicate

= Path patterns

= Existential subqueries

= Quantifiers

= Boolean expressions



Search Conditions

Comparison conditions
e Traditional comparison operators are available
= Chained comparisons can be created, too

o>| expression expression

e E.g.: 2015 <= m.year < 2020
= Equivalentto 2015 <= m.year AND m.year < 2020




Search Conditions

NULL testing conditions

e Three-valued logic is assumed
= Traditional true and false values
— But also null representing the third unknown value

e Indirect testing is thus necessary

H.ﬁ-%

IN predicate conditions
* Allow for both fixed enumerations as well as arbitrary lists
e E.g.:m.language IN [ "cs", "sk" ]

e E.g.: "comedy" IN m.genres



Search Conditions

String matching conditions
e STARTS WITH/CONTAINS /ENDS WITH operators

<»
@D~ (i)

e Eg.m.title ENDS WITH "Bobule"
= Matches Bobule, 2Bobule, ...

Regular expression conditions

e Special operator =~ is used for this purpose
e E.g.:om.title =~ ".*xBobule"




Search Conditions

Path pattern predicate conditions

* Path pattern can directly be used as a condition
= At least one relationship pattern is required, though

H-_T_T

e Satisfied if and only if a non-empty result is yielded
e E.g.: (m)-[:PLAY]->(:ACTOR)

= Ensures the existence of at least one actor for an already
resolved movie node m




Search Conditions

Existential subquery conditions
e Subquery with top-level query expressive power
e Or standard graph pattern with optional filtering
- @D (D -] D
ﬂ»@»f
)

e

o Satisfied if and only if a non-empty result is yielded

e E.g.: EXISTS { (m)-[:PLAY]->(a:ACTOR) WHERE a.name
= "Ivan Trojan" }




Search Conditions

Quantifier conditions

* Allow to simulate quantifiers and their derivatives

(an) (Or~(variable )N )-~{ expression |-~(WHERE )-~[ expression |-() )+
(one )

(anv)

(sieLe)

o Satisfied if and only if...

= ALL: all items satisfy a given condition

= NONE: no item satisfies a given condition

= ANY: at least one item satisfies a given condition

= SINGLE: exactly one item satisfies a given condition

e E.g.: ANY (g IN m.genres WHERE g = "comedy")



Search Conditions

Logical conditions
» Standard logical connectives are available
= AND (conjunction)
= (R (disjunction)
= NOT (negation)




Match Clause

OPTIONAL mode of MATCH clauses

* Optionally attempts to find matching data sub-graphs...

= When not possible, one solution with all variables bound to
null is generated

o Left outer natural join is used when chaining




Match Clause: Example

Movies from 2005 or earlier, optionally their actors born after 1965

MATCH (m:MOVIE)
WHERE (m.year <= 2005)

OPTIONAL MATCH (m)-[:PLAY]->(a:ACTOR)
WHERE (a.year > 1965)

RETURN m.title, a.name

m i

m ‘ (vratnelahve) (machacek) ‘
(samotari) | X (samotari) =
(stesti) (samotari)

(medvidek) (machacek)

m
(samotari) "Samotafi" "Jifi Machacek"
(samotari) "Samotafri" "Jitka Schneiderova"

(stesti) null "Stésti" null




General Clauses



Return Clause

RETURN clause

* Defines the final query result to be returned to the user
= Can only be provided as the very last clause in the chain

e av——wa -T
(
R RN RN

e DISTINCT modifier: removes duplicate solutions
* ORDER BY subclause
e SKIP and LIMIT subclauses: pagination of solutions




Return Clause

Projection
* Enumeration of columns to appear in the result

= Variables for nodes, relationships, or even paths
= Properties via the dot notation
= Arithmetic expressions, aggregate functions, ...

¢ Wildcard * = all the existing columns
= Can only be specified as the very first item

- 7
o — \J}
S

\»»ﬂ
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Return Clause: Example

Actors born in 1965 or later and numbers of movies they played in

MATCH (a:ACTOR)
WHERE (a.year >= 1965)

ORDER BY count DESC

RETURN a.name, SIZE([ (a)<-[:PLAY]-(m:MOVIE) | m ]) AS count

a
(schneiderova)
(machacek)
(vilhelmova)

"Jifi Machacek" 3
"Jitka Schneiderova" 1
"Tatiana Vilhelmova" 0




Solution Modifiers

ORDER BY subclause

* Defines the order of solutions within the query result
= Multiple criteria can be specified
— Nodes, relationships, nor paths cannot be used for this purpose

= The order is undefined unless explicitly defined

¢ Default direction is ASC
H- expression

ASCENDING
DESCENDING

)

N




Solution Modifiers

Pagination
e SKIP subclause

= Determines the number of solutions to be skipped
in the query result

°+.—> expression (o

e LIMIT subclause

= Determines the number of solutions to be included
in the query result

H.—» expression [>o



Grouping and Aggregation

Traditional grouping is supported, too
* Works exactly as in the relational databases
= However, there are no specific GROUP BY or HAVING clauses

* Happens automatically...

= When at least one aggregate function is called in projection

e All columns are then divided into two disjoint types...
= Aggregating colums
— All the columns calling an aggregate function
— E.g.: COUNT, SUM, MIN, MAX, AVG, COLLECT, ...
= Grouping columns

— All the remaining ones
— They all become the classification columns
— And so they determine the individual groups to be created



Grouping and Aggregation: Example

Actors born in 1965 or later and movies they played in

MATCH (a:ACTOR)<-[:PLAY]-(m:MOVIE)
WHERE (a.year >= 1965)
RETURN a.name, COUNT(m) AS count, COLLECT(m.title) AS movies

a m
(machacek) (vratnelahve) a.name
(machacek) (samotari) — "Jiri Machacek" e | —
(machacek) (medvidek) "Jitka Schneiderova"

(schneiderova) (samotari)

"Jiti Machacek" 3 [ "Vratné lahve", "Samotafi", "Medvidek" ]
"Jitka Schneiderova" 1 [ "Samotafi" ]

¢ Note that Tatiana Vilhelmovd will not be included
= Since she did not play in any movie



Grouping and Aggregation: Example

Actors born in 1965 or later and movies they played in (cont’d)

MATCH (a:ACTOR)
WHERE (a.year >= 1965)
OPTIONAL MATCH (a)<-[:PLAY]-(m:MOVIE)
RETURN a.name, COUNT(m) AS count, COLLECT(m.title) AS movies

a m
a (machacek) (vratnelahve)
(machacek) _ (machacek) (samotari) N
(schneiderova) (machacek) (medvidek)
(vilhelmova) (schneiderova) (samotari)
(vilhelmova) null

"Jifi Machacek" [ "Vratné lahve", "Samotafi", "Medvidek" ]
"Jitka Schneiderova" 1 [ "Samotari" ]
"Tatiana Vilhelmova" 0 []




Grouping and Aggregation

Aggregate functions

-~ (D)~ @ ()
expression
DISTINCT

- @ | expression F@»J
- ~>( DISTINCT J

Qo)

(ave)

\’-'® ,f | expression F@—J
(s




With Clause

WITH clause

* Constructs another intermediate result in the chain
= Analogous behavior to the RETURN clause
— Except that no output is sent to the user

= QOptional WHERE subclause can also be provided

T e

(

\[ommevam] - \-[Spamse}-)  \-{iwraasel
(
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With Clause: Example

Movies with above average number of actors and rating at least 75

MATCH (m:MOVIE)
WITH m, SIZE([(m)-[:PLAY]->(a:ACTOR) |al) AS actors
WITH AVG(actors) AS average
MATCH (m:MOVIE)
WHERE (SIZE([(m)-[:PLAY]->(a:ACTOR)|al) > average) AND (m.rating >= 75)
RETURN m.title, m.rating

m m actors
(vratnelahve) (vratnelahve) 2 P
(samotari) — (samotari) 3 — 1.75 —
(medvidek) (medvidek) 2 :
(stesti) (stesti) 0
average m

1.75 (vratnelahve) | — | "Vratné lahve" 76
1.75 (samotari) "Samotari" 84




Query Structure



Query Structure

Chaining of clauses
e Certain rules must be followed when chaining the clauses...

[ : UNWIND clause MERGE clause

—




Query Structure

Query parts
° WITH clauses split the whole query into query parts

* Within each query part...
= Read clauses (if any) must precede write clauses (if any)

— Read clauses: MATCH, ...
— Write clauses: CREATE, DELETE, SET, REMOVE, ...

e As for the very last query part...
= |t must be terminated by RETURN clause

— Unless this part contains at least one write clause
— l.e., read-only queries must return data




Union Operation

UNION operation

* Combines results yielded by two or more multi-part queries
= Standard union set operation is assumed

PT7

* Schemas of all involved results must be identical
= |.e., the same number and the same names of columns

o> multi-part query \'

* Duplicates are automatically removed
= Unless the ALL keyword is provided



Map and List Operations

Property lookup operator
* Allows to access a particular property of a given map
= Static lookup: m.genres
— Dot notation is used, for fixed property keys only
= Dynamiclookup: m["genres"]
List subscript operator
* Allows to access a particular list item based on its index

= Position of the first item is 0
= Negative values are also permitted

— For positions starting at the end and in the reverse direction
o @~ [emesson |- @~

° E.g.:m.genres[0], m.genres[~1] (the last genre)



List Operations

List slice operator

* Allows to retrieve an arbitrary range of a given list
= Lower bound is inclusive, upper bound is exclusive
— At least one bound needs to be specified

= Negative numbers are allowed as well

H. ‘ expression ' . ‘ expression ' .»o

* Examples
= range(l, 5) — [1, 2, 3, 4, 5]
= range(1l, 5)[1..3] — [2, 3]
* range(1, 5)[..3] —» [1, 2, 3]
= range(1l, 5)[1..] = [2, 3, 4, 5]
* range(1, 5)[-3..-1] — [3, 4]
* range(1l, 5)[3..-1] — [4]



List Operations

List comprehension
* Creates a new list based on items of an existing list

= Only items satisfying a given condition are considered
= New output items can be constructed

— Otherwise the original ones are returned intact
r».—»(variable}».—»l expression }—}

{

@~
\ @D ) \-@-[oomm)

* Examples
* [ i IN range(l, 5) WHERE i 7, 2
= [ i IN range(l, 5) WHERE i 7, 2
[20, 40]

01—12, 4]
0] i=*101—



List Operations

Pattern comprehension
* Creates a new list based on solutions of a given path pattern
= Only solutions satisfying a given condition are considered

O o7 —»—E-ﬂ

\»-_»J .—’-’_EXPI'ESSIOI'I .—’0
* Example
= [ (m:MOVIE)-[:PLAY]->(a:ACTOR) WHERE (m.year >=
2005) AND (a.name = "Ji¥i Maché&adéek") | m.title 1]
— ["Vratné lahve", "Medvidek"]




Write Clauses

CREATE clause
* Inserts new nodes or relationships into the data graph

~(ereate) \'@I_T
O

MATCH (m:MOVIE { id: "stesti"})

CREATE
(a:ACTOR { id: "vilhelmova", name: "Tatiana Vilhelmova", year: 1978}),
(m)-[:PLAY]->(a)

Example




Write Clauses

DELETE clause
* Removes nodes, relationships or paths from the data graph

» Relationships must always be removed before the nodes
they are associated with

= Unless the DETACH modifier is specified

D—ﬁ expression °

Example

MATCH (:MOVIE { id: "stesti"})-[r:PLAY]->(a:ACTOR)
DELETE r




Write Clauses

SET clause

e Allows to...
= set a value of a particular property
— orremove a property when null is assigned
= replace properties (all of them) with new ones
= add new properties to the existing ones
= add labels to nodes

e Cannot be used to set relationship types

o> +®+Cproperty key}»@—»[ expression
Cvariable}»@»[ expression ]
(aae)~(D)+(2)-~[opression]




Write Clauses

REMOVE clause
¢ Allows to...

= remove a particular property
= remove labels from nodes

e Cannot be used to remove relationship types

o> variable)—»@—»( property key )
)

o/







Lecture Conclusion

Neodj = graph database
* Property graphs
* Traversal framework
= Path expanders, uniqueness, evaluators, traverser

Cypher = graph query language
* Read (sub-)clauses: MATCH, WHERE, ...
e Write (sub-)clauses: CREATE, DELETE, SET, REMOVE, ...
e General (sub-)clauses: RETURN, WITH, ORDER BY, LIMIT, ...
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