NDBIO50: Query Languages Il
http://www.ksi.mff.cuni.cz/~svoboda/courses/232-NDBI050/

Lecture

Neodj

Martin Svoboda
martin.svoboda@ matfyz.cuni.cz

21. 5. 2024

Charles University, Faculty of Mathematics and Physics

http://www.ksi.mff.cuni.cz/~svoboda/courses/232-NDBI050/
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

Graph databases

* Introduction
Neodj
¢ Data model: property graphs
* Cypher query language
= Read, write, and general clauses

Graph Databases

Data model
e Property graphs
= Directed / undirected graphs, i.e. collections of ...

— nodes (vertices) for real-world entities, and
— relationships (edges) among these nodes

= Both the nodes and relationships can be associated
with additional properties

Types of databases
¢ Non-transactional = small number of large graphs

* Transactional = large number of small graphs

Graph Databases

Query patterns
» Create, update or remove a node / relationship in a graph

Graph algorithms (shortest paths, spanning trees, ...)

General graph traversals

Sub-graph queries or super-graph queries

Similarity based queries (approximate matching)

Neodj Graph Database

@yneoy)

Neodj

Graph database
¢ https://neodj.com/

Features

= Open source, massive scalability, high availability,
fault-tolerant, master-slave replication, ACID transactions, ...

Developed by Neo Technology
* Implemented in Java

Operating systems: cross-platform

Initial release in 2007
= Version we cover is 4.4.10 (August 2022)

https://neo4j.com/

Data Model

Dataspace structure

Instance (— database) — single graph

Property graph = directed labeled multigraph
» Collection of nodes (vertices) and relationships (edges)
Node
¢ Unique identity
= Internal, should not be used directly

* Set of labels (zero or more)

= Allow for node categorization via user-defined types
= E.g.: ACTOR, MOVIE, ...

e Property map = set of individual properties
= Allow to associate a given node with additional data

Data Model

Relationship
* Unique identity
= Once again, internal only

Direction (immutable and compulsory)
= Relationships are traversable in both directions

— There is no impact on efficiency
— Directions can also be entirely ignored when querying

Start node and end node
= Can be the same, i.e., loops are allowed as well

Exactly one type (immutable)
= E.g.: PLAY, ...

e Property map

Data Types

Structural types
¢ Node, Relationship
* Path = sequence of interleaved nodes and relationships
Property types
e String (e.g., "Samotari")
= Sequence of Unicode characters

— Enclosed preferably by double quotes
— Standard backslash escaping (\", \n, \\, ...)

Integer (e.g., 165, 0xA5, 00245)
Float
Boolean (literals true and false)

Data Types

Composite types
o List = ordered collection of values
= Values can be anything

— lLe., all types are permitted (property, structural, composite)
— And so lists can contain other embedded lists, maps, ...

= Lists can be heterogeneous

~@ — @~
=

» Eg.: [2015, "Samotari", [2020], 2015]

Data Types

Composite types (cont’d)
* Map = unordered collection of key-value pairs
= Key is a string, unique in a given map
= Value can be anything, again
= Maps can be heterogeneous, too

@»f ®-
))

N

H@\’

= E.g.:
Property map = restricted version of a general map

* Used for node and relationship property maps

= Only atomic values or homogeneous arrays of atomic values
of any property type are permitted for top-level properties

NDBIO50: Query Languages Il | Lecture: Neodj | 21. 5. 2024 11

Sample Data

Sample graph with movies and actors

CREATE

// Movies
(m1:MOVIE { id: "vratnelahve", title: "Vratné lahve", year: 2006,

rating: 76, language: "cs", genres: ["comedy"] }),
(m2:MOVIE { id: "samotari", title: "Samota¥i", year: 2000,

rating: 84, language: "cs", genres: ["comedy", "drama"] }),
(m3:MOVIE { id: "medvidek", title: "Medvidek", year: 2007,

rating: 53, language: "cs", genres: ["comedy", "drama"] }),
(m4:MOVIE { id: "stesti", title: "St&sti", year: 2005,

rating: 72, language: "cs", genres: ["drama"] }),
// Actors
(al:ACTOR { id: "trojan", name: "Ivan Trojan", year: 1964 }),
(a2:ACTOR { id: "machacek", name: "Ji¥i Machalek", year: 1966 }),
(a3:ACTOR { id: "schneiderova", name: "Jitka Schneiderova", year: 1973 }),
(a4:ACTOR { id: "sverak", name: "Zden8k Sv&rak", year: 1936 }),
(ab5:ACTOR { id: "vilhelmova", name: "Tatiana Vilhelmova", year: 1978 }),

Sample Data

Sample graph with movies and actors (cont’d)

// Vratné lahve
(m1)-[p1:PLAY {
// Vratné lahve
(m1)-[p2:PLAY {
// Samotari -->
(m2)-[p3:PLAY {
// Samotafi -->
(m2) - [p4:PLAY {
// Samotafi -->
(m2)-[p5:PLAY {
// Medvidek -->
(m3)-[p6:PLAY {
// Medvidek -->
(m3)-[p7:PLAY {

—--> Ji¥i Machacek

role: "Robert Landa" }]->(a2),
--> Zdenék Sveérak

role: "Josef Tkaloun" }]->(a4),
Ivan Trojan

role: "Ond¥ej" }]1->(al),

Ji¥i Machacek

role: "Jakub" }]->(a2),

Jitka Schneiderova

role: "Hanka" }]->(a3),

Ivan Trojan

role: "Ivan" }]->(al),

Jiri Machéacek

role: "Jirka" }]->(a2)

Neodj Interfaces

Database architecture
e Client-server
e Embedded database
= Directly integrated within your application

Neodj drivers

e Official: Java, .NET, JavaScript, Python

e Community: C, C++, PHP, Ruby, Perl, R, ...
Cypher shell

* Interactive command-line tool
Query patterns

e Cypher query language, Traversal framework

Cypher

Cypher
* Declarative graph query language
= Allows for expressive and efficient querying and updates

* Based on sub-graph pattern matching, similarly as SPARQL
= Patterns are expressed using ASCII-Art inspired syntax

— Circles () for nodes
— Arrows <--, -—, ==> for relationships

* Each query is evaluated to a solution sequence (table)
= Ordered collection of individual solutions (matching subgraphs)
Chaining of clauses
* Not only individual clauses can be used repeatedly...
* ...they can also be (almost arbitrarily) chained together
= Intermediate result of one clause is passed to the following one

NDBIO50: Query Languages Il | Lecture: Neodj | 21. 5. 2024

16

Sample Query

Names of actors who played in Medvidek movie

MATCH (m:MOVIE)-[:PLAY]->(a:ACTOR)
WHERE m.title = "Medvidek"
RETURN a.name, a.year
ORDER BY a.year

m a
(medvidek) (trojan) — Ivan Trojan 1964
(medvidek) | (machacek) Jiri Machacek 1966

Clauses and Subclauses

Read clauses
e MATCH — describes graph pattern to be searched for
= WHERE — adds additional filtering constraints
Write clauses
e CREATE, DELETE, SET, REMOVE
= Creates / deletes nodes / relationships / labels / properties
General clauses
e RETURN — defines what the query result should contain
= ORDER BY, SKIP,and LIMIT subclauses

e WITH - constructs auxiliary intermediate query result
= ORDER BY, SKIP,LIMIT, and also WHERE

Path Patterns

Path Patterns

Node pattern
* Describes one data node and conditions it must satisfy
= Eg.: (), (:ACTOR { name: "Ivan Trojan" }),..
Relationship pattern
* Describes one data relationship and conditions it must satisfy
= E.g.: O--0, (:MOVIE)-[:PLAY]->(:ACTOR), ...
Path pattern
e Describes one data path to be found
= Via a sequence of interleaved node and relationship patterns

" —

Node Patterns

Node pattern
* Describes one data node to be matched
= When inner conditions are provided, they must all be satisfied

O am - O-@ - @

e Variable
= Makes a given node accessible in subsequent query fragments

— l.e., for selection in WHERE conditions, projection in RETURN
clauses, alignment with other node patterns, ...
— Such a thing would otherwise be impossible

= Eg.: (m)

Node Patterns

Node pattern (cont’d)
¢ Labels condition

= Set of zero or more labels can be provided
= Data node to be matched then...

— Must have at least all the specified labels
— lLe., there may also be other, but these are compulsory

= E.g.: (m:MOVIE)
¢ Property map condition
= Data node to be matched...

— Must have at least all the specified properties
— lLe., they are present and have identical values
— Note that mutual order of such properties is unimportant

" E.g.: (m:MOVIE { title: "Medvidek", year: 2007 })

Relationship Patterns

Relationship pattern

* Describes one data relationship to be matched

= When the direction condition is provided, it must be satisfied
= When inner conditions are given, they must also be satisfied

L:.J [t pae e} L:.J

¢ Direction condition
= Data relationship to be matched...

— Must have the same direction
— l.e., ——> for outgoing direction or <-- for incoming
— When -~ is used, direction is ignored

Relationship Patterns

Relationship pattern (cont’d)

O e \'@”Pj/ ’
{

s s O

e Variable

= Allows us to access a given relationship later on

* Eg.: O-[r]->0

Relationship Patterns

Relationship pattern (cont’d)
* Type condition

= Set of zero or more types can be provided
= Data relationship to be matched then...

— Must have one of the enumerated types
" E.g.: O-[r:PLAY]->()

* Property map condition
= Data relationship to be matched...
— Must have at least all the specified properties

* Eg.: O-[r:PLAY { role: "Jakub" }1->()

Relationship Patterns

Relationship pattern (cont’d)
e Variable length mode
= When activated, paths of arbitrary lengths can be found

— Otherwise (i.e., by default), one relationship pattern will be
matched by exactly one data relationship

= Length condition ranges: *, *4, 2. .6, *. .6, *2. .

@
S ——

= Each data relationship on the path must...

— Satisfy all the involved conditions (direction, type, properties)
» Eg.: O-[r:FRIEND *..2]-()

— If variable is introduced, it then references the whole path

Graph Patterns

Relationship uniqueness requirement

* One data node may match multiple node patterns at once
= Eg.: (a) (b)
— It may happen that both a and b will actually be the same node
— However, only when distinct data relationships were used...

* |.e., one data relationship cannot be matched repeatedly
Node pattern alignment
* Intentional alignment of nodes (not relationships) is possible
= Simply by using the same shared variables
e Eg.: (a) (a)
General graph pattern
e Graphs can be decomposed into individual path patterns

= Uniqueness requirement / shared variables work the same way

NDBIO50: Query Languages Il | Lecture: Neodj | 21. 5. 2024 27

Read Clauses

Match Clause

MATCH clause

* Allows to search for sub-graphs of the data graph that match
the provided graph pattern

= Solution sequence is produced, each variable has to be bound

e Natural join is used on the previous result when chaining

Tam P ﬂ»@»f _W
~

N

(

@D (oo -

* WHERE condition
= Only solutions satisfying a given condition are preserved

Match Clause: Example

Names of actors who played with Ivan Trojan in any movie
* Notice that /van Trojan himself is not included in the result
= Because of the uniqueness requirement

MATCH (i:ACTOR)<-[:PLAY]-(m:MOVIE)-[:PLAY]->(a:ACTOR)
WHERE (i.name = "Ivan Trojan")
RETURN a.name

MATCH (i:ACTOR { name: "Ivan Trojan" })
<-[:PLAY]-(m:MOVIE)-[:PLAY]->
(a:ACTOR)
RETURN a.name

i m a
(trojan) | (samotari) (machacek) _ "Jifi Machacek"
(trojan) | (samotari) (schneiderova) "Jitka Schneiderova"
(trojan) | (medvidek) (machacek) "Jiri Machacek"

Match Clause: Example

Names of actors who played with Ivan Trojan in any movie (cont’d)
* Uniqueness requirement is not applied across clauses
= And so internal identities must be used to exclude Ivan Trojan

MATCH (i:ACTOR { name: "Ivan Trojan" })<-[:PLAY]-(m:MOVIE)
MATCH (m:MOVIE)-[:PLAY]->(a:ACTOR)

WHERE (i <> a)
RETURN a.name

m i
(vratnelahve) (machacek)
i m (vratnelahve) (sverak)
(trojan) (samotari) X g::z::;; (trojan)
(trojan) | (medvidek) -
(medvidek) (trojan)
(medvidek)

Search Conditions

WHERE subclause conditions

* Only solutions satisfying a given condition are preserved

= Evaluated directly during the matching phase (not after it)
* Possible conditions

= Comparisons

= NULL testing predicate

= |N predicate

= Path patterns

= Existential subqueries

= Quantifiers

= Boolean expressions

Search Conditions

Comparison conditions
e Traditional comparison operators are available
= Chained comparisons can be created, too

o>| expression expression

e E.g.: 2015 <= m.year < 2020
= Equivalentto 2015 <= m.year AND m.year < 2020

Search Conditions

NULL testing conditions

e Three-valued logic is assumed
= Traditional true and false values
— But also null representing the third unknown value

e Indirect testing is thus necessary

H.ﬁ-%

IN predicate conditions
* Allow for both fixed enumerations as well as arbitrary lists
e E.g.:m.language IN ["cs", "sk"]

e E.g.: "comedy" IN m.genres

Search Conditions

String matching conditions
e STARTS WITH/CONTAINS /ENDS WITH operators

<»
@D~ (i)

e Eg.m.title ENDS WITH "Bobule"
= Matches Bobule, 2Bobule, ...

Regular expression conditions

e Special operator =~ is used for this purpose
e E.g.:om.title =~ ".*xBobule"

Search Conditions

Path pattern predicate conditions

* Path pattern can directly be used as a condition
= At least one relationship pattern is required, though

H-_T_T

e Satisfied if and only if a non-empty result is yielded
e E.g.: (m)-[:PLAY]->(:ACTOR)

= Ensures the existence of at least one actor for an already
resolved movie node m

Search Conditions

Existential subquery conditions
e Subquery with top-level query expressive power
e Or standard graph pattern with optional filtering
- @D (D -] D
ﬂ»@»f
)

e

o Satisfied if and only if a non-empty result is yielded

e E.g.: EXISTS { (m)-[:PLAY]->(a:ACTOR) WHERE a.name
= "Ivan Trojan" }

Search Conditions

Quantifier conditions

* Allow to simulate quantifiers and their derivatives

(an) (Or~(variable)N)-~{ expression |-~(WHERE)-~[expression |-())+
(one)

(anv)

(sieLe)

o Satisfied if and only if...

= ALL: all items satisfy a given condition

= NONE: no item satisfies a given condition

= ANY: at least one item satisfies a given condition

= SINGLE: exactly one item satisfies a given condition

e E.g.: ANY (g IN m.genres WHERE g = "comedy")

Search Conditions

Logical conditions
» Standard logical connectives are available
= AND (conjunction)
= (R (disjunction)
= NOT (negation)

Match Clause

OPTIONAL mode of MATCH clauses

* Optionally attempts to find matching data sub-graphs...

= When not possible, one solution with all variables bound to
null is generated

o Left outer natural join is used when chaining

Match Clause: Example

Movies from 2005 or earlier, optionally their actors born after 1965

MATCH (m:MOVIE)
WHERE (m.year <= 2005)

OPTIONAL MATCH (m)-[:PLAY]->(a:ACTOR)
WHERE (a.year > 1965)

RETURN m.title, a.name

m i

m ‘ (vratnelahve) (machacek) ‘
(samotari) | X (samotari) =
(stesti) (samotari)

(medvidek) (machacek)

m
(samotari) "Samotafi" "Jifi Machacek"
(samotari) "Samotafri" "Jitka Schneiderova"

(stesti) null "Stésti" null

General Clauses

Return Clause

RETURN clause

* Defines the final query result to be returned to the user
= Can only be provided as the very last clause in the chain

e av——wa -T
(
R RN RN

e DISTINCT modifier: removes duplicate solutions
* ORDER BY subclause
e SKIP and LIMIT subclauses: pagination of solutions

Return Clause

Projection
* Enumeration of columns to appear in the result

= Variables for nodes, relationships, or even paths
= Properties via the dot notation
= Arithmetic expressions, aggregate functions, ...

¢ Wildcard * = all the existing columns
= Can only be specified as the very first item

- 7
o — \J}
S

\»»ﬂ
-

Return Clause: Example

Actors born in 1965 or later and numbers of movies they played in

MATCH (a:ACTOR)
WHERE (a.year >= 1965)

ORDER BY count DESC

RETURN a.name, SIZE([(a)<-[:PLAY]-(m:MOVIE) | m]) AS count

a
(schneiderova)
(machacek)
(vilhelmova)

"Jifi Machacek" 3
"Jitka Schneiderova" 1
"Tatiana Vilhelmova" 0

Solution Modifiers

ORDER BY subclause

* Defines the order of solutions within the query result
= Multiple criteria can be specified
— Nodes, relationships, nor paths cannot be used for this purpose

= The order is undefined unless explicitly defined

¢ Default direction is ASC
H- expression

ASCENDING
DESCENDING

)

N

Solution Modifiers

Pagination
e SKIP subclause

= Determines the number of solutions to be skipped
in the query result

°+.—> expression (o

e LIMIT subclause

= Determines the number of solutions to be included
in the query result

H.—» expression [>o

Grouping and Aggregation

Traditional grouping is supported, too
* Works exactly as in the relational databases
= However, there are no specific GROUP BY or HAVING clauses

* Happens automatically...

= When at least one aggregate function is called in projection

e All columns are then divided into two disjoint types...
= Aggregating colums
— All the columns calling an aggregate function
— E.g.: COUNT, SUM, MIN, MAX, AVG, COLLECT, ...
= Grouping columns

— All the remaining ones
— They all become the classification columns
— And so they determine the individual groups to be created

Grouping and Aggregation: Example

Actors born in 1965 or later and movies they played in

MATCH (a:ACTOR)<-[:PLAY]-(m:MOVIE)
WHERE (a.year >= 1965)
RETURN a.name, COUNT(m) AS count, COLLECT(m.title) AS movies

a m
(machacek) (vratnelahve) a.name
(machacek) (samotari) — "Jiri Machacek" e | —
(machacek) (medvidek) "Jitka Schneiderova"

(schneiderova) (samotari)

"Jiti Machacek" 3 ["Vratné lahve", "Samotafi", "Medvidek"]
"Jitka Schneiderova" 1 ["Samotafi"]

¢ Note that Tatiana Vilhelmovd will not be included
= Since she did not play in any movie

Grouping and Aggregation: Example

Actors born in 1965 or later and movies they played in (cont’d)

MATCH (a:ACTOR)
WHERE (a.year >= 1965)
OPTIONAL MATCH (a)<-[:PLAY]-(m:MOVIE)
RETURN a.name, COUNT(m) AS count, COLLECT(m.title) AS movies

a m
a (machacek) (vratnelahve)
(machacek) _ (machacek) (samotari) N
(schneiderova) (machacek) (medvidek)
(vilhelmova) (schneiderova) (samotari)
(vilhelmova) null

"Jifi Machacek" ["Vratné lahve", "Samotafi", "Medvidek"]
"Jitka Schneiderova" 1 ["Samotari"]
"Tatiana Vilhelmova" 0 []

Grouping and Aggregation

Aggregate functions

-~ (D)~ @ ()
expression
DISTINCT

- @ | expression F@»J
- ~>(DISTINCT J

Qo)

(ave)

\’-'® ,f | expression F@—J
(s

With Clause

WITH clause

* Constructs another intermediate result in the chain
= Analogous behavior to the RETURN clause
— Except that no output is sent to the user

= QOptional WHERE subclause can also be provided

T e

(

\[ommevam] - \-[Spamse}-) \-{iwraasel
(

N Y

With Clause: Example

Movies with above average number of actors and rating at least 75

MATCH (m:MOVIE)
WITH m, SIZE([(m)-[:PLAY]->(a:ACTOR) |al) AS actors
WITH AVG(actors) AS average
MATCH (m:MOVIE)
WHERE (SIZE([(m)-[:PLAY]->(a:ACTOR)|al) > average) AND (m.rating >= 75)
RETURN m.title, m.rating

m m actors
(vratnelahve) (vratnelahve) 2 P
(samotari) — (samotari) 3 — 1.75 —
(medvidek) (medvidek) 2 :
(stesti) (stesti) 0
average m

1.75 (vratnelahve) | — | "Vratné lahve" 76
1.75 (samotari) "Samotari" 84

Query Structure

Query Structure

Chaining of clauses
e Certain rules must be followed when chaining the clauses...

[: UNWIND clause MERGE clause

—

Query Structure

Query parts
° WITH clauses split the whole query into query parts

* Within each query part...
= Read clauses (if any) must precede write clauses (if any)

— Read clauses: MATCH, ...
— Write clauses: CREATE, DELETE, SET, REMOVE, ...

e As for the very last query part...
= |t must be terminated by RETURN clause

— Unless this part contains at least one write clause
— l.e., read-only queries must return data

Union Operation

UNION operation

* Combines results yielded by two or more multi-part queries
= Standard union set operation is assumed

PT7

* Schemas of all involved results must be identical
= |.e., the same number and the same names of columns

o> multi-part query \'

* Duplicates are automatically removed
= Unless the ALL keyword is provided

Map and List Operations

Property lookup operator
* Allows to access a particular property of a given map
= Static lookup: m.genres
— Dot notation is used, for fixed property keys only
= Dynamiclookup: m["genres"]
List subscript operator
* Allows to access a particular list item based on its index

= Position of the first item is 0
= Negative values are also permitted

— For positions starting at the end and in the reverse direction
o @~ [emesson |- @~

° E.g.:m.genres[0], m.genres[~1] (the last genre)

List Operations

List slice operator

* Allows to retrieve an arbitrary range of a given list
= Lower bound is inclusive, upper bound is exclusive
— At least one bound needs to be specified

= Negative numbers are allowed as well

H. ‘ expression ' . ‘ expression ' .»o

* Examples
= range(l, 5) — [1, 2, 3, 4, 5]
= range(1l, 5)[1..3] — [2, 3]
* range(1, 5)[..3] —» [1, 2, 3]
= range(1l, 5)[1..] = [2, 3, 4, 5]
* range(1, 5)[-3..-1] — [3, 4]
* range(1l, 5)[3..-1] — [4]

List Operations

List comprehension
* Creates a new list based on items of an existing list

= Only items satisfying a given condition are considered
= New output items can be constructed

— Otherwise the original ones are returned intact
r».—»(variable}».—»l expression }—}

{

@~
\ @D) \-@-[oomm)

* Examples
* [i IN range(l, 5) WHERE i 7, 2
= [i IN range(l, 5) WHERE i 7, 2
[20, 40]

01—12, 4]
0] i=*101—

List Operations

Pattern comprehension
* Creates a new list based on solutions of a given path pattern
= Only solutions satisfying a given condition are considered

O o7 —»—E-ﬂ

\»-_»J .—’-’_EXPI'ESSIOI'I .—’0
* Example
= [(m:MOVIE)-[:PLAY]->(a:ACTOR) WHERE (m.year >=
2005) AND (a.name = "Ji¥i Maché&adéek") | m.title 1]
— ["Vratné lahve", "Medvidek"]

Write Clauses

CREATE clause
* Inserts new nodes or relationships into the data graph

~(ereate) \'@I_T
O

MATCH (m:MOVIE { id: "stesti"})

CREATE
(a:ACTOR { id: "vilhelmova", name: "Tatiana Vilhelmova", year: 1978}),
(m)-[:PLAY]->(a)

Example

Write Clauses

DELETE clause
* Removes nodes, relationships or paths from the data graph

» Relationships must always be removed before the nodes
they are associated with

= Unless the DETACH modifier is specified

D—ﬁ expression °

Example

MATCH (:MOVIE { id: "stesti"})-[r:PLAY]->(a:ACTOR)
DELETE r

Write Clauses

SET clause

e Allows to...
= set a value of a particular property
— orremove a property when null is assigned
= replace properties (all of them) with new ones
= add new properties to the existing ones
= add labels to nodes

e Cannot be used to set relationship types

o> +®+Cproperty key}»@—»[expression
Cvariable}»@»[expression]
(aae)~(D)+(2)-~[opression]

Write Clauses

REMOVE clause
¢ Allows to...

= remove a particular property
= remove labels from nodes

e Cannot be used to remove relationship types

o> variable)—»@—»(property key)
)

o/

Lecture Conclusion

Neodj = graph database
* Property graphs
* Traversal framework
= Path expanders, uniqueness, evaluators, traverser

Cypher = graph query language
* Read (sub-)clauses: MATCH, WHERE, ...
e Write (sub-)clauses: CREATE, DELETE, SET, REMOVE, ...
e General (sub-)clauses: RETURN, WITH, ORDER BY, LIMIT, ...

	Outline
	Introduction
	Neo4j
	Data Model
	Sample Data
	Query Interfaces
	Cypher Language
	Path Patterns
	Match Clause
	Return Clause
	With Clause
	Query Structure
	Union Operation
	Expressions
	Write Clauses

	Conclusion

