Query languages 2 (NDBI006)
Recursion in SQL

J. Pokorny
MFF UK

Content

Introduction

Creating recursive queries
Recursive calculation
Recursive sea _ 1
Logical hierarchies
Recursion termination
Conclusion

NOoO Ok

Query languages 2 - Recursion

Recursion in SQL

m [ntuitively: a query is recursive, if it is used in
its own definition.

m [his connection can be both direct and over
more tables.

m Advantages: in certain cases the only
effective way for obtaining the result

m Disadvantages: often worse readability a
clarity

Query languages 2 - Recursion 2

Where to use recursion in SQL

m effective for any data with hierarchical structure
m relationships in tree structures
m search in cyclic and acyclic graphs

m examples from practice:
m search for connections in timetables
m organizational structure of a company
= bill of materials

m components in a document management system,
etc.

Query languages 2 - Recursion 3

You can get around without recursion

m SQL before the SQL:99 standard did not contain
a possibility to construct recursive queries,

m non-procedural solution: with adding certain
,2graph information®,

m procedural solution: use of cursors, cycles,
m others: ORACLE: proprietary solution + PL/SQL,

m loss of efficiency and optimization
m code is not so ,elegant”

Query languages 2 - Recursion

Application of recursion

m For graph traversal we obtain:

m reachability
Q1. Find all suborders of a given employee.

m path enumerating
Q2. Find the whole structure (all sub-products) for a
given product.
m path joining
Q3. For a given product list all its components and
Including their amount.

Query languages 2 - Recursion

Other advantages and
disadvantages of recursion

m Advantages:
m all work is specified in one query
m |t is possible to use a big part of the result

m Disadvantages
m if only the small part of the result is really used
m possibly endless recursion calls

Query languages 2 - Recursion 6

Content

Introduction

Creating recursive queries
Recursive calculation
Recursive searching

Logical hierarchies
Recursion termination
Conclusion

NOoOOROODbD-~

Query languages 2 - Recursion

Common Table Expression

m generalization of table expression in SQL:92
m declared by keyword WITH

m used as a substitute in nested queries

m ze SELECT, INSERT, UPDATE, DELETE

m queries immediate after WITH keyword are
called just once time

WITH [RECURSIVE] CTE [, CTE]...
CTE ::=name_CTE[(name_slI[,name_sl]...)] AS
(CTE_query_definition)

Query languages 2 - Recursion

Composition of aggregations —
WIthOUt CTE Contributions(ID, forum, question)

Q4: Find the forum with the highest number of
contributions

SELECT COUNT(ID) AS number, forum
FROM Contributions
GROUP BY forum
HAVING COUNT(ID) = (
SELECT MAX(number)
FROM (SELECT COUNT(ID) AS number, forum
FROM Contributions
GROUP BY forum)

Note: We are looking for MAX(COUNT(...))

Query languages 2 - Recursion 10

Composition of aggregations —
with CTE

WITH
Max_amount_of contrib(number, forum)

AS (SELECT COUNT(ID), forum)
FROM Contributions
GROUP BY forum)

SELECT number, forum
FROM Max_amount_od_contrib
WHERE number = (SELECT MAX(number)
FROM Contrib_number)

Query languages 2 - Recursion 11

More CTEs in one query

WITH
Amount_of contrib(number, forum)

AS (SELECT COUNT(ID), forum
FROM Contributions
GROUP BY forum),

Max_amount_of contrib(number)

AS (SELECT MAX(number)
FROM Amount_of contrib)

SELECT C1.*
FROM Amount_of contrib C1 INNER JOIN
Max_amount_of contrib C2 ON
C1.number = C2.number

Note: CTEs work in the same way as derived tables (given
by SELECT behind FROM)

Query languages 2 - Recursion 12

A movement to recursion

Q5.

emplD | name | function suplD
1 Novak (director NULL
2 Srb vice-director| 1

3 Lomsky|manager 2

4 Bor manager 2

FROM Employees

)
SELECT * FROM Superiors

WITH Superiors(name, suplD, empID) AS
(SELECT name, suplD, emplD

WHERE function = 'manager

Query languages 2 - Recursion

name supIlD | emplD
Lomsky | 2 3
Bor 2 4

13

Recursive queries

m |tis possible to refer R in CTE for table R

m the temporary table is created (exists only during query
evaluation)

m three parts
WITH
anchoring (initialization subquery)
UNION ALL

recursive member

e recursion runs when no further record is added or the recursion
limit (MAXRECURSION) is not exceeded.

 be careful to cycle occurrence in the recursive member

SELECT
« outer SELECT - returns the query result

Query languages 2 - Recursion 14

Example

anchoring: executed only once

recursive member: repeatedly
—_—

join with the previous step ——

output —

What was the query?

Query languages 2 - Recursion

WITH RECURSIVE Superiors(name, suplD, emplD) AS
(SELECT name, suplD, emplD
FROM Employees
WHERE name = 'Novy'
UNION ALL
SELECT E.name, E.suplD, E.emplID
FROM Employees AS E
INNER JOIN
Superiors AS S
ON S.suplID = E.empID)
SELECT * FROM Superiors

name supIlD | emplD
Novy 11 13
Ryba 6 11
Rak) 6
Syka 4 5

Bor 2 4

Srb 1 2
Novak | NULL 1

15

Q6.: Find all managers of employee
Novy (including himself).

Example

anchoring: executed only once

recursive member: repeatedly
—_—

join with the previous step ——

output —

Query languages 2 - Recursion

SELECT *

WITH RECURSIVE Superiors(name, suplD, emplD) AS
(SELECT name, suplD, emplD

FROM Employees
WHERE name = 'Novy'
UNION ALL

SELECT E.name, E.suplD, E.emplID

FROM Employees AS E
INNER JOIN

Superiors AS S

ON S.suplID = E.empID)
FROM Superiors

name

suplD | emplD

Novy

11 13

Ryba

11

Rak

6

Syka

Bor

Srb

Novak

)
4
2
1

ULL

16

Restrictions of recursive queries

m |tis not allowed to refer CTE in anchor

m Recursive part always self-refers CTE

m SQL:99 supports only "linear" recursion: each FROM has at most one
reference to recursively defined relation.

m Recursive part must not contain
m SELECT DISTINCT
m GROUP BY
m HAVING
m scalar aggregation
m TOP

s OUTER JOIN

m each column in recursive subquery has to be type-compatible with
associated column in initialization subquery

m type conversion — CAST can be used

Query languages 2 - Recursion 17

Content

Introduction

Creating recursive queries
Recursive calculation
Recursive searching
Logical hierarchies
Recursion termination
Conclusion

NOoOOGaR®®DN =~

Query languages 2 - Recursion

18

Recursive calculation

Q7. Which parts (including their amounts) are
necessary to construct a plane wing.

Query languages 2 - Recursion

19

Recursive calculation

m simplified storing in DB (relation Components) with
quantities of particular parts in a part

Part Subpart Qty
wing wing strut 5
wing wing flap

wing landing gear 1
wing rivet 100
wing strut rivet 10
wing flap hinge 2
wing flap rivet 5
landing gear hinge 3
landing gear rivet 8
hinge rivet 4

Query languages 2 - Recursion

Recursive calculation — queries

Q8. How many rivets are used to construct
a plane wing?

Q9. List of all subparts for creating a plane
wing including their amount.

Query languages 2 - Recursion 21

Recursive calculation — solution

= \What we have to be aware of?
m recursion calling (graph walking)
m to sum amounts of rivets in individual parts
m amounts of individual sub-parts

Query languages 2 - Recursion 22

Recursive calculation — Q8

s CTE m result

WITH RECURSIVE WingParts(Subpart, Qty) f——eat [

AS wing strut | 5 directly
((SELECT Subpart, Qty [initialization wing flap
FROM Components ubauen] sg:rmg 1
WHERE Part = ‘Wing’) [recursive vet 100
UNION ALL upauen rivet 50 from wing strut

(SELECT C.Subpart, W.Qty * C.Qty

] hinge 2 from wing flap
FROM WingParts W, Components C . ;
rivet 5 from wing flap
WHERE W.Subpart = C.Part)); . ;
hinge 3 from landing gear
rivet 8 from landing gear
rivet 8 from hinge of wing falp
rivet 12 from hinge of landing

gear

Query languages 2 - Recursion 23

Recursive calculation — Q8

m finally we summarize particular quantities

WITH RECURSIVE WingParts(Subpart, Qty) AS
((SELECT Subpart, Qty

FROM Components

R It
WHERE Part = ‘wing’) X
UNION ALL 183

(SELECT C.Subpart, W.Qty * C.Qty
FROM WingParts W, Components C
WHERE W.Subpart = C.Part))

SELECT sum(Qty) AS Qty
FROM WingParts
WHERE Subpart = ‘rivet’;

Query languages 2 - Recursion

Recursive calculation — Q9

m To solve Q9 it is enough to change only the result query

WITH RECURSIVE WingParts(Subpart, Qty) AS

((SELECT Subpart, Qty
FROM Components
WHERE Part = ‘wing’)
UNION ALL
(SELECT C.Subpart, W.Qty * C.Qty
FROM WingParts W, Components C
WHERE W.Subpart = K.Part))
SELECT Subpart, sum(Qty) AS Qty
FROM WingParts
GROUP BY Subpart;

Query languages 2 - Recursion

Result
Subpart Qty
wing strut 5
wing flap 1
landing gear 1
hinge 5
rivet 183

25

Syntax of tree traversal v Oracle 9i

SELECT columns FROM table
[WHERE condition3]
start WITH condition1
CONNECT BY condition2
[ORDER BY ...]

m Rows satisfying the condition in start WITH are considered
as root rows on the first level of nesting

m For each row at level j, direct descendants fulfilling
condition in clause CONNECT BY at level i+1 are looked

for recursively.
= Ancestor row in the condition is denoted by the key word PRIOR

Query languages 2 - Recursion 26

Syntax of tree traversal v Oracle 9i

m Finally, there are removed rows not satisfying
the WHERE clause.

m If sorting is not defined, the order corresponds
to the pre-order traversal.

m Each row contains the pseudocolumn LEVEL
containing the row level in hierarchy.

Query languages 2 - Recursion 27

Emp(emplID, name, manager)

Oracle 9i vs. SQL:99
m Oracle 9i: 7 -

SELECT LPAD(" ', 2*Level) || name, Level
FROM Emp

start WITH manager IS NULL

CONNECT BY manager = PRIOR emplD;

m SQL:99

WITH RECURSIVE Emp1 AS (
SELECT x.name AS name, 0 AS Level
FROM Emp x WHERE manager IS NULL
UNION ALL
SELECT y.name, Level+1
FROM Emp y JOIN Emp1 ON y.manager =
Emp1.emplD)
SELECT * FROM Emp1;

Query languages 2 - Recursion

28

Oracle 9i vs. SQL:99

Effect of LPAD
function

Query languages 2 - Recursion

Data

Novak

Srb

Lomsky

Bor

29

Recursion support in other DBMS

m Yes: IBB DB2, Microsoft SQL Server,
PostgressSQL

m No: MySQL

Query languages 2 - Recursion 30

Content

Introduction

Creating recursive queries
Recursive calculation
Recursive searching
Logical hierarchies
Recursion termination
Conclusion

N OO~

Query languages 2 - Recursion

31

Recursive searching

m Effort to find the best solution based on certain
criteria of the given problem.

m Example:
Let us consider an airport departure system and a

client who wants to travel from San Francisco to New
York with the lowest cost.

Query languages 2 - Recursion

32

Recursive searching — example

m route map (including costs for the flight):

‘:j_f_ﬁ___.:y Ehil:agl:l -(-.____2_5_&‘_*
San Francisco [Ew Ok

Eﬂi 400 100
L0s Angeles ¢ v 240

> Diallas

Query languages 2 - Recursion 33

Recursive searching — example

m several possible paths (in different colours):

San Francisco (4\, BEw Yok

Eﬂi 200
L0s ﬁngeles% v 225
Dallas

Query languages 2 - Recursion 34

Recursive searching — example

m [he table of Flights

flightno start destination | cost
xxx01 SF CHG 275
xxx02 SF DLS 300

Q10. Find the lowest cost path from San
Francisco to New York.

Problem: the flight map is not an acyclic graph —
we have to solve the stopping of recursion.

Query languages 2 - Recursion

Recursive searching — 1. solution

m Temporary table used in CTE is called Trips

m the subquery with all directly (one-flight) reachable
destinations from San Francisco will be the anchor of
the query

m the recursive part of the query will find others (two or
more flights) destinations

Query languages 2 - Recursion

36

Recursive searching — 1. solution

WITH RECURSIVE Trips (destination, route, totalcost) AS
((SELECT destination, destination, cost
FROM Flights
WHERE start = 'SF')
UNION ALL
(SELECT l.destination
v.route || *,' || .destination, v.totalcost + |.cost
FROM Trips v, Flights |
WHERE v.destination = |.start))

SELECT route, totalcost Where is the problems?
FROM Trips - We add a longer expression to
WHERE destination = 'NY"; the route column

We are in endless loop.

Query languages 2 - Recursion 37

Recursive searching — 1. solution +
correction

m Violation of the rule, that the value in the column of the
recursive subquery must not be longer in the corresponding
column of the initialization subquery (anchor):

Solution:

m We change data type in both subqueries (initialization and recursive) to
VARCHAR(50)

m This is done by the CAST expression.

m Function CAST [CAST (expression AS data_type)

Examples:
CAST (c1 + c2 AS Decimal(8,2))
CAST (namel|address AS Varchar(255))

m |onger string is completed with spaces
m shorter string is cut and returns a warning

Query languages 2 - Recursion 38

Recursive searching — 1. solution +
correction

m Problem of looping

Solution:

= \We will not take into account flights from the start, i.e.
from San Francisco

m \We will not take into account flights from the
destination, i.e. from New York

m We are only interested in flights with a maximum 2
stages

Query languages 2 - Recursion 39

Recursive searching — final solution

WITH RECURSIVE Trips (destination, route, #flights, totalcost) AS
((SELECT destination, CAST(destination AS Varchar(50)), 1, cost
FROM Flights
WHERE start = 'SF'
UNION ALL

(SELECT l.destination, CAST(v.route || ',' || l.destination AS Varchar(50)),
v. #flights + 1, v.totalcost + |.cost

FROM Trips t, Flights f

WHERE t.destination = f.start Result
AND f.destination <> 'SF' route totalcost
AND f.start <> 'NY' DLS, NY 525
AND t. #flights < 2)) CHG,NY 525
SELECT route, totalcost
FROM Trips
WHERE destination = 'NY ' AND totalcost=(SELECT min(totalcost)
FROM Trips

WHERE destination="NY");

Query languages 2 - Recursion 40

Content

Introduction

Creating recursive queries
Recursive calculation
Recursive searching
Logical hierarchies
Recursion termination
Conclusion

NoOoGaRsWODN =

Query languages 2 - Recursion

41

Classification of hierarchies

m by graph properties
m convergent
m divergent
m recursive

m by balance
m balanced
« all leafs on the same level
« on each level different objects (e.g., geographical structure)
= unbalanced
« leafs at different levels
« uniform objects (e.g. organizational structure)

m Problem: representation by relations

Query languages 2 - Recursion 42

Divergent hierarchies

m each node except the root has exactly one

parent Ran
Ex.: geographical hierarchies
* continent, state, town, street -
m implementation
m Edge (PKEY, KEYO) e
= primary key KEYO oo | pron s
m table with referential iBi EE% li é
integrity PKEYc KEYO iEzF iigg ‘“i 53

Query languages 2 - Recursion

Convergent hierarchies

Query languages 2 - Recursion

Each object can have arbitrary number of
ancestors and descendants

ADR
Ex.: Departments of company S
Define the result of query
+—+ +—+——+
Q11. How many descendants has "AAA™? [
- 6,7,8? N
Implementation csceezs =elamrowsares
= table of objects KBYO |PRICE| |PKSY |CKEY |NUM
= table of relationships Bee | <21l |ama joce | 5
CCC S23] |AREA |DDD 20
LoD S25] | CCC | EEE 33|
EEE S33 | DDD | EEE 44 |
FEFE S24| | DDD | FE'F S
GGG S44 | | FFF | GG 5
———————————— + -+

Recursive hierarchies

m similar to convergent ones

m Moreover: a node can be its ascendant (directly or
indirectly)

m Example: supervisor-subordinate vs. project manager
and director as a team member

m they cause cycling
m in practice, their use is mostly conflicting .- b

I I 4 J— |
m implementation s coe oo

-+ +—+-—+

m as convergent ones |

EEE FFF
GGG

Query languages 2 - Recursion 45

Content

Introduction

Creating recursive queries
Recursive calculation
Recursive searching
Logical hierarchies
Recursion termination
Conclusion

NN~

Query languages 2 - Recursion

46

Recursion termination

m How remove cycling in recursive
nierarchies?

m Possibilities of stopping the recursion

m QB Server

« V MS SQL after reaching the value
MAXRECURSION (default 100)

m after reaching a given level

m to remember the path and omit already
visited nodes

Query languages 2 - Recursion 47

Problem: recursive hierarchies

table RH |PKEY| CKEY
AAA BBB
AAA CCC
AAA DDD
CCC EEE
DDD AAA
DDD FFF
DDD EEE
FFF GGG

m]
BBB CCC DDD

N N

EEE FFF

GGG

Q12. Find all descendants AAA until level 4

Query languages 2 - Recursion

Stopping after reaching nt" level
(attribute LVL)

ckey v N

WITH RECURSIVE PARENT(CKEY, LVL) AS 1 AAA 0
(SELECT DISTINCT PKEY, 0 s REE 1
FROM RH . IEE
WHERE PKEY = 'AAA'
UNION ALL 4 bbb 1
SELECT H.CKEY, R.LVL+1 5 A 2 <
FROM RH H, PARENT P & EEE 2
WHERE P.CKEY = H.PKEY ===
AND P.LVL + 1 < 4 ITEE
)
SELECT CKEY, LVL 3 BB 3 <
FROM PARENT: 1 CCt 3 <
11 ooo 3 <
12 EEE 2
m \What to do with duplicates in result?

Query languages 2 - Recursion

49

Shift away the duplicates (using 2
CTE)

WITH RECURSIVE PARENT(CKEY, LVL) AS
(SELECT DISTINCT PKEY, 0
FROM RH CKEY LWL MNUM
WHERE PKEY ='AAA! 1
UNION ALL 5
SELECT H.CKEY, R.LVL+1
FROM RH H, PARENT R 3
WHERE P.CKEY = H.PKEY 4 DDD
5
5
7

.....................

AND P.LVL + 1 <4
),
WITHOUT DUPL(CKEY, LVL, NUM) AS
(SELECT CKEY, MIN(LVL), COUNT(*)
FROM PARENT

GROUP BY CKEY)

m
M
M
L o o i
— = a3 a2

SELECT CKEY, LVL, NUM
FROM WITHOUT _DUPL

Query languages 2 - Recursion 50

Ommiting already visited nodes

WITH PARENT (CKEY, LVL, PATH) AS
(SELECT DISTINCT PKEY, 0, VARCHAR(PKEY, 2

FROM RH
WHERE PKEY = ‘AAA'
UNION ALL
SELECT H.CKEY, P.LVL + 1, Result
LVL PATH
P.PATH [| >' || H.CKEY —
FROM RH H, PARENT R — P v
WHERE P.CKEY = H.P oo 7 Tavcce
AND DDD 1 AAA>DDD
LOCATE(H.CKEY || *>*, P.PATH) = 0 EEE | 2 | AMASCCCEEE
) EEE 2 | AAA>DDD>EEE
SELECT CKEY, LVL, PATH FFF 2 | AAASDDD>FFF
FROM PARENT; GGG 3 AAA>DDD>FFF>GGG

Query languages 2 - Recursion 51

Stack vs. recursion

m Problem: how effectively implement recursion —
join repeating can lead to that things being
calculated repeatedly

m Recursion can be simulated using a stack.
m Stack model is faster than CTE

m [tis usable only for querying hierarchical data

Query languages 2 - Recursion 52

Vehicles(Id, parentID, name)
Example

o

parentiD name
NULL ALL
sea
earth
air

submarine

boat

car

two-wheeled

Ol |N[ojoOh |~ |WIN|~

truck

RN
o

rocket

—
—

plain

-
N

motorcycle

||| PRP[WWWOWININ|~|—~]~-

-
w

bicycle

Query languages 2 - Recursion 53

Example

ALL

|
(earth) |
Sea air

|
; . two-
' wheele

Query languages 2 - Recursion

54

Ancestors without recursion (1)

m Can recursion be removed? YES, using
the stack.

m We add 2 new columns to the table
Vehicles: R _bound and L _bound

m Their values are based on the numbering
that occurs through the preorder tree
traversal.

Query languages 2 - Recursion 55

Ancestors without recursion (2)

m We fill the table with the data, i.e., for new
columns:

UPDATE Vehicles SET L_bound =1, R bound = 26 WHERE
ID =1

UPDATE Vehicles SET L _bound =2, R bound =7 WHERE
ID =2

UPDATE Vehicles SET L bound =12, R bound =13
WHERE ID = 12

UPDATE Vehicles SET L bound =14 , R bound = 14
WHERE ID =13

Query languages 2 - Recursion 56

Ancestors - without recursion (3)

ALL 1,26

2,7 earth
cea , () 8,19 Sir 20,25

two-
wheele

17,18 21,22 23,24

12,13 14,15

Query languages 2 - Recursion 57

Example

Id parentlD | name L _bound R_bound
1 NULL ALL 1 26
2 1 sea 2 7
3 1 earth 8 19
4 1 air 20 25
3 2 submarine 3 4
6 2 boat 3 6
7 3 car 9 10
8 3 two-wheeled | 11 16
9 3 truck 17 18
10 4 rocket 21 22
11 4 plain 23 24
12 8 motorcycle |12 13
13 8 bicycle 14 15

Query languages 2 - Recursion

Ancestors - without recursion (4)

Query for ancestors of motorcycle uses
intervals.

SELECT *

FROM Venhicles

WHERE R bound > 12
AND L bound <13

Query languages 2 - Recursion

59

Example

Id | parentlD | name L_bound R_bound
1 | NULL ALL 1 26
2 |1 sea 2 7
3 |1 earth 8 19
4 |1 air 20 25
S5 |2 submarine 3 4
6 |2 boat 3 6
7 |3 car 9 10
8 |3 two-wheeled | 11 16
9 |3 truck 17 18
10 |4 rocket 21 22
11 |4 plain 23 24
12 | 8 motorcycle 12 13
13 |8 bicycle 14 15

Query languages 2 - Recursion

60

