Query languages 2 (NDBI006)
EXxpressive power - part 2

J. Pokorny
MFF UK

Recursive DATALOG

Ex.:

In EDB there is a relation
WORKS FOR(Name of w,Chairman)

SUB_SUP(x,y):-WORKS_FOR(x,y)
SUB_ SUP(x,y):-WORKS_FOR(x,z), SUB_SUP(z,y)

SUB_SUP* is a transitive closure of the relation WORKS_FOR*

The following holds:
WORKS FOR < SUB_SUP
(WORKS_FOR * SUB_SUP)[1,3] < SUB_SUP

Query languages 2 — Expressive power 2

Recursive DATALOG

= SUB_SUP* is a solution of equation

(WORKS FOR * SUB_SUP)[1,3] U
WORKS_FOR = SUB SUP

More generally:
For IDB there is a system of equations

E(P4,....P,) =P, I=1,...,n
The solution of the system depends on EDB and is its
fixpoint.

Remark: Since all used operations of Ai are additive,
the fixpoint exists and even the least one.

Query languages 2 — Expressive power 2

Recursive DATALOG

Algorithm: (Naive) evaluation
Input: EDB = {R,,...,R/}, IDB = {rules for P,,...,P_},
Output: least fixpoint P,*,...,P*
Method: We use a function eval(E) evaluating a relational
expression E.
fori:=1tondo P, = ;
repeat for i:=1 to n do
Q =P; {store old values}
fori:=1tondo
P, := eval(E,(P,,...,P,))
until P, = Q, forall i e<1,n>

Remark: It is so-called Gauss-Seidel method.

Query languages 2 — Expressive power 2

Recursive DATALOG

Statement: Evaluating algorithm stops and returns the least
fixpoint of the system of datalogical equations.

Proof:

(1) follows from the fact that eval is monotonic and P,* are
generated from a finite number of elements.

(2) follows from that P,* is solution of the system of equations
and, moreover, it is a part of each solution for each i. It can
be proved by induction on the number of iterations. The start
Is from O, which is a part of each solution.

Disadvantages:
» creating duplicate tuples,

» creating unnecessarily large relations, when we want,
e.g., only a selection of the tuples from P,* in the result.

Query languages 2 — Expressive power 2

Recursive DATALOG

Method of differences

Idea: in the (k+1). step of the iteration we do not calculate P, k*1,
but D1 =PK1-PkK ie.

Pk1=P; kU Df*1and thus
P+ =E(P*") L E(D)),
since E, is additive.

The change of eval for P, is given by on rule:
pincreval(E (AP,,...,AP,))
— eval(E(...,P1,AP;,P;.4,...))

J1n

Query languages 2 — Expressive power 2

Recursive DATALOG

The change of eval for P; given by s rules:
increval(P;AP,...,AP,))
= Uy Pincreval(E(APy,...,AP,))

EX.:
increval(S’) = &
increval(C) =
(F(X1,X)*F(X2,Y)* AS’(X1,X2))[X,Y] U
(F(X1,X)*F(X2,Y)* AC(X1,X2))[X,Y]
increval(R) =
AS'(X,Y) U (ARCX,Y)'F(Z,Y))[X, Y] U
(AR(Z,Y)*F(Z,X))[X,Y]

Query languages 2 — Expressive power 2

Recursive DATALOG

Algorithm: (Seminaive) evaluation
Input: EDB = {R,,...,R,}, IDB = {rules for P,,...,P_},
Output: least fixpoint P.*,...,P*
Method: 1x use the function eval and on differences increval
fori:=1tondo
AP, :=eval (E(9,...,9));
repeat fori:=1tondo AQ, :=AP; {store old diferences}

fori:=1tondo beqin
AP; :=increval(E;(AQ,,...,AQ,, P,,..., P,))

AP; = AP; - P, {delete duplicates}
end;
fori:=1tondo P, := P,uU AP,
until AP, = foralli e<1,n>

Query languages 2 — Expressive power 2

Recursive DATALOG

Statement: The evaluating algorithm stops and
« returns the LFP of the system of datalogical equations,

« LFP corresponds just to those facts, which are provable
from EDB by rules from IDB.

Ex.. R(xy) :- P(x,y)
R(x,y) - R(x,z), R(z,y)
LFP R* is a solution of equation
R(X,Y) =P(X,Y) U (R(X,Z2)*R(Z,Y))[X,Y] (*)
>if P*={(1,2), (2,3)}, then

R*={(1,2), (2,3), (1,3)} is the LFP, whose elements
correspond to all derivable facts,

R* is also a minimal model.

Query languages 2 — Expressive power 2

Recursive DATALOG

> If (1,1) € R*, then R(1,1) :- R(1,1),R(1,1), so also R* =
{(1,1),(1,2), (2,3), (1,3)} is a model and it is a solution
of equation (*).

> If (3,1) € R*, then {(1,2), (2,3), (1,3), (3,1)}
is not a model and not a solution of the equation (*).
» Let P* = J; R* ={(1,2)}.
then R* is a model, but it is not a solution the equation

(%)-

Query languages 2 — Expressive power 2

10

Use of recursive Datalog in web services

Assumption: web sources with querying, which
enables to formulate always a subset of
conjunctive queries.

Ex.: Amazon — we enter an author name and
obtain the list of his/her books. We can not ask
for a list of all available books.
EXx.: Travel service with source relations R:
flights(start, end), trains(start, end),
buses(start, end), shuttle(start, end)

Query languages 2 — Expressive power 2

11

Use of recursive Datalog in web services

Datalogical program extends possibilities of
conjunctive queries by generating views with
recursion, e.g. LP

ans(a, b) :- flights(a,c), ind(c,b)

ind(c,b) :- flights(c,b), buses(b, Praha)

iInd(c,b) :- flights(c,c’), ind(c’,b)
Remark: However, we can not find out from LP

anyway whether Prague is accessible from
somewhere with air followed by a shuttle service.

Query languages 2 — Expressive power 2 12

Extension of Datalog by negation

Ex.: NSR(x,y) ... x and y are relatives, but x is not a sibling of y
NSR(X’y) .- R(X’y)’ _‘S,(X’y)
NSR* = R* - S™*

or
NSR(X,Y) = R(X,Y) * S'(X,Y), where S’ is the complement to
a suitable universe.

Approach:

» We allow a negation in bodies of rules, i.e. negative
literals between L,,...,L,

» safe rules must have limited variables, i.e. we forbid
variables, which are in a negative literal and are not
limited by the original definition.

Query languages 2 — Expressive power 2 13

Extension of Datalog by negation

Problem:

The solution of a logical program does not have to be
LFP, but a number of MFPs.

Ex.:. BORING(x) :- = INTERESTING(x), MAN(x)
INTERESTING(x) :- = BORING(x), MAN(X)
B(X) = M(X) - I(X)
1(X) = M(X) - B(X)
Solution: Let M = {John},
M1: {BORING* = {John}, INTERESTING* = &}
M2: {INTERESTING™* = {John}, BORING* = (J}

Query languages 2 — Expressive power 2

14

Stratified DATALOG

< It is not true, that one model is less than the second
one,

% There is no model less than M1 or M2
— we have two minimal models

Intuition: a constraint of the negation — if it is applied ,
then to a known relation, i.e. relations have to be first
defined (maybe recursively) without negation. Then a
new relation can be defined by them without or with
negations.

Df.: Definition of a virtual relation S is a set of all rules,
which have S in head.

Df.: S occurs in a rule positively (negatively), if it is
contained in a positive (negative) literal.

Query languages 2 — Expressive power 2

15

Stratified DATALOG

Df: Program P is stratifiable, if there is a partition P =
P,u ... uP, (P, are mutually disjunctive) such that
for each i e<1,n> the following holds:

1. If the relational symbol S occurs positively in a rule
from P;, then the definition of S is contained in U,; P,

j
2. If the relational symbol S occurs negatively in a rule
from P;, then the definition of S is contained in U, P,

(P, can be)

Df.: Partition P,,..., P, is called a stratification P, each P,
IS a stratum.

Remark: stratum ... layer
strata ... layers

Query languages 2 — Expressive power 2 16

Stratified DATALOG

Ex.: Program P(x) :- = Q(x) (1)
R(1) (2)
Q(x) :- Q(x), — R(x) (3)
is stratifiable. Stratification: {(2)} U {(3)} U {(1)}
Program P(x) :- = Q(x)
Q(x) :- = P(x)
IS not stratifiable.
Df.: Let (U,V) is an edge in a dependency graph. (U,V)
IS positive (negative), if thereisarule V:- ... U ... and
U occurs there positively (negatively).

Remark: An edge can be positive and negative as well.

Query languages 2 — Expressive power 2 17

Stratified DATALOG

Statement: Program P is stratifiable if and only if its
dependency graph contain no cycle with a negative edge.

Proof. = each virtual relation P has assigned the index of
stratum, in which it is defined. Thus, (P,Q) is positive =
index(P) < index(Q)

(P,Q) is negative = index(P) < index(Q)

If there was a cycle with a negative edge, there would be a
node X, where index(X) < index(X), which is contradiction.

< We find strongly connected components in the dependency
graph, then perform the graph’s condensation, which is
acyclic, and assign a topological ordering of components.

Query languages 2 — Expressive power 2 18

Stratified DATALOG

Each component defines one stratum, ordering of component
defines their numbering. Since negative edges are at most
between components, the rules associated to a component

create a stratum.

Ex.:

Query languages 2 — Expressive power 2

other edges are +

19

Stratified DATALOG

Assumptions: rules are safe, rectified.
adom ... union of constants from EDB and IDB
— Q(X4,...,X,) is transformed to (adom x...x adom) - Q*
Algorithm: Evaluation of a stratifiable program
Input. EDB = {R,,...,R/}, IDB = {rules for P,,...,P,},
Output: minimal fixpoint P,*,...,P*
method: Find a stratification of the program; calculate adom;
fori:=1to s do {s strata}
begin {for stratum i there are relations calculated from strata j, where j<i}
if Q in stratum / is positive then use Q;
if Q in stratum j is is negative then use adom" - Q;
use algorithm for calculation of LFP
end

Query languages 2 — Expressive power 2 20

Stratified DATALOG

Statement: Evaluating algorithm stops and returns a
MFP of the system of datalogical equations.

Proof. FP follows by induction on the number of strata.

Remark: LP of the stratified DATALOG— can have
more MFPs.

Query languages 2 — Expressive power 2

21

Stratified DATALOG

EDB: Parts(part, subpart, quantity) IDB

tricycle bike, 3 Large(P) :- Parts(P,S,Q), Q > 2
tricycle frame 1 Small(P) :- Parts(P,S,Q), — Large(P)
frame saddle 1

frame pedal 2

bike rim 1

bike tire 1

tire valve 1

tire inner tube 1

Stratification and resulting MFP: Stratum 0: Parts
Stratum 1: Large Large = {tricycle}
Stratum 2: Small Small = {frame, bike, tire}
But: relations Small={tricycle, frame, bike, tire}, Large={} provide other MFP of this
program, although it is not the result of a stratified evaluation.

Query languages 2 — Expressive power 2

22

Stratified DATALOG

Remark: Stratifiable program has generally more stratifications.
They are equivalent, i.e. their evaluation leads to the same
MFP (Apt, 1980).

Statement: Non-recursive Datalog programs express just those
queries, which are expressible by a monotonic subset of Ax.

Remark: positive relational algebra Agp {Xx, U, [], ¢}.

Query languages 2 — Expressive power 2 23

Stratified DATALOG

Ar
Arp
DATALOG

Query languages 2 — Expressive power 2

24

Relational algebra and DATALOG™

Statement: Non-recursive DATALOG™ programs express just
those queries, which are expressible in Ak.

Proof. <= by induction on the number of operators in E

1. D of operators: E =R R is from EDB

E = const. relation
then for each tuple add p(a,,...,a,) into EDB. Nothing into IDB.
2.E=E,UE,

By induction hypothesis, there are programs for E, and E,
(associated predicates are e, and e,)

e(Xqs.-,Xp) = €4(Xq,..,X,)
e(Xqs--+,Xp) = €5(Xy,.. s X,)

Query languages 2 — Expressive power 2 25

Relational algebra and DATALOG™

e(Xq,.-,Xp) = €4(Xq,-.,Xy), = €5(Xq,--1,Xp)
4. E=E[iq,...,i]

e(Xiqy- - X) = €4(Xq,--,Xy),

(X1, s Xnam) = €4(Xq5--5X1)s €5(Xiiqs- - Xparm)
5. E=E(9)

e(Xq,.--,Xp) = €4(Xq,.--,Xp), X;= X OF X;;= @

= from non-recursiveness: topological ordering + adom" — Q™ for
negation. For each P defined in IDB it is possible to construct
an expression in A, . By substitutions (according to ordering)

we obtain relational expressions depending only on relations
from EDB.

Query languages 2 — Expressive power 2 26

Relational algebra and DATALOG™

Ex.. Construction of LP from a relational expression
CAN_BUY(X)Y) =

IS LIKED(X,Y) - (DEBTOR(X) x IS_LIKED(X,Y)[Y])
EDB: IS _LIKED(X)Y) ... person X likes the thing Y

DEBTOR(X) ... person X is a DEBTOR

denote DEBTOR(X) x IS_LIKED(X,Y)[Y] as

D A COUPLE(X,Y).
Then a datalogical program for CAN_BUY is:

IS_ADMIRED(y) :- IS_LIKED(x,y)
D A COUPLE(x,y):-DEBTOR(x), IS_ADMIRED(y)
CAN_BUY(x,y) - IS_LIKED(x,y), = D_A_ COUPLE(x,y)

Query languages 2 — Expressive power 2 27

Relational algebra and DATALOG™

Ex.: Construction of a relational expression from LP
F)

EDB: R, S", adom = R[X] UR[Y] U S
P(x) - R(x,y), =S(y) <
Q(z) :- S(z), =P(2) R -

P(X) = (R(X,Y) * {adom - S}(Y))[X]

Q(Z) = S(Z) * {adom - P}(from) = (S n {adom - P})(from)

Since S — adom, salary Q(Z) = S(Z) - P(Z). After substitution of
F)

Q(Z2) =S(Z) - (R(Z,Y) * {adom - S}(Y))[from]
Remark: adom can be replaced by R[Y]

Query languages 2 — Expressive power 2 28

Closed World Assumption (1)

Remark: logical program leads to one resulted relation.

More generally: more (independent) relations = more
relational expressions

Ex.: S'(y,w) := F(x,y), F(X,w), y #w

If F* is such, that it can not be inferred S°(Moore, Bond), then
can be declared —S’(Moore, Bond)

Remark: It is not proof!

Df.: Consider Horn clauses (without —). Closed World
Assumption (CWA) says: whenever the fact R(a,,...,a,) is
not derivable from EDB and rules, then —R(a;,...,a,).

Remark: CWA is a metarule for deriving negative information.

Notation: — cwa

Query languages 2 — Expressive power 2

29

Closed World Assumption (2)

Assumptions for use of CWA:
(1) different constants do not denote the same object
Ex.: F(Flemming, Bond), F(Flemming, 007) = S’(Bond, 007)

If Bond and 007 are names of the same agent, we obtain
nonsense

(2) Domain is closed (constants from EDB+IDB)
Ex.: Otherwise, it could not deduce —S’(Bond,007);
(they could have his father “except” of database).

Statement: (about CWA consistency): Let E is a set of facts from
EDB, / is a set of facts derivable by the datalogical program
IDBUEDB, J is a set of facts the form — R(a,,...,a,) , where R
Is a predicate symbol from IDBUEDB and R(a,,...,a,) is notin /
v E. Then [UEUJ is logically consistent.

Query languages 2 — Expressive power 2 30

Closed World Assumption (3)

Proof: Let K= /U E U J is not consistent. = F rule p(...):-
q4(...),---,0x(-..) and a substitution such that facts on the right
side of the rule are in K and derived facts are not in K. Since
facts from right side are positive literals, they are from IUE
and not from J. But then the literal from the rule head has to
be from / (is derivable by LFP), that is a contradiction.

Remark: DATALOG™ can not be built on CWA.
Ex.: Consider the program
LP: BORING(Emil) :- mINTERESTING(Emil)
l.e. —mINTERESTING(Emil) = BORING(Emil) thatis <

INTERESTING(Emil) v BORING(Emil) and therefore neither
INTERESTING(Emil) nor BORING(Emil) can be derivable
from LP.

Query languages 2 — Expressive power 2

Closed World Assumption (4)

LP —CWA INTERESTING(Emil)
LP /—CWA - BORING(Emil)
But no model of LP can contain
{— INTERESTING(EmIl),-BORING(Emil)}
— DATALOG™is not consistent with CWA.
Remark: LP has two minimal models:
{BORING(Emil)} and INTERESTING{(Emil)}
Stratification solves the example naturally:

EDB,r, =Y
first, it calculates INTERESTING, that is &, then BORING=
{Emil},

l.e., the minimal model {BORING(Emil)} is chosen.

Query languages 2 — Expressive power 2 32

Closed World Assumption (5)

Consider program
P’: INTERESTING(Emil) :- = BORING(Emil)

i.e. — BORING(Emil) = INTERESTING(Emil) that is
< INTERESTING(Emil) v BORING(Emil)

Stratification will chose the model
{INTERESTING(Emil)}

Query languages 2 — Expressive power 2

33

Deductive databases (1)

Informally: EDB U IDB U IC

Discusion of clauses: clause is universally quantified
disjunction of literals

—Liv—=Lv.v=L vKi VK vivKy ()
LiAaLy A ALc= Ky vKy v vK

Remark: p=1 in Datalog

(i) k=0, p=1:
facts, e.g., emp(George), earns(Tom,8000)
unrestricted clauses, e.g. likes(Good,x)

(ii) k=1, p=0:
negative facts, e.g. —earns(Eduard,8000)
IC, e.qg., — likes(John,x)

Query languages 2 — Expressive power 2

34

Deductive databases (2)

(iir) k>1, p=0:
IC, e.g. VX (— man(x) v — woman(x))
(iv) k>1, p=1: this is a Horn clause, i.e.,
|IC or a deductive rule
(in) k=0, p>1:
disjunctive information, e.g. man(x) v woman(x),
earns(Eda,8000) v earns(Eda,9000)
(vi) k>0, p>1:
|C or definition of uncertain data, e.g. father
parent(x,y) = father(x,y) v mother(x,y)
(vii) k=0, p=0:
empty clauses (should not be a part of DB)

Query languages 2 — Expressive power 2

35

Deductive databases (3)

df.: Definite deductive database is a set clauses, which are
neither of type (in) nor (vi). Database containing (v) or
(vi) is indefinite.

Definite deductive DB can be understood as a couple

1. theory T, which contains special axioms:
» facts (associated to tuples from EDB)

» axioms about elements and facts:

- completeness (no other facts hold than those from EDB and those
derivable by rules)

- domain closure axiom
= unique names axiom

» set of Horn clauses (deductive rules)

Query languages 2 — Expressive power 2 36

Deductive databases (4)

CWA can be used for definite deductive DB.

Remark: this eliminates to need to use axioms of
completeness and axiom of unique nhames = more
simple implementation

Statement: Definite deductive DB is consistent.

+ answer to a query Q(xy,...,X,) in a deductive DB is a set
of tuples (a,,...,a,) such, that

T = Q(ay,...,ay),
< deductive database fulfils ICiff Vce ICT = c.

Remark: if a formal system is correct and complete,
then — Is the same as —

Query languages 2 — Expressive power 2 37

Correctness of IS (1)

DB vs. real world (object world)
Requirements:
< consistency

It is not possible to prove that w and — w
+ correctness in the object world

Database is in accordance to the object
world

< completeness

In the system it is possible to prove, that
either w or — w.

Query languages 2 — Expressive power 2

38

Correctness of IS (2)

EXx.: problems related to the object world

Sch1: emp(.), salary(.), earns(.,.)

IC: ¥V x (emp(x) =3y (salary(y) A earns(x,y))
M1: emp: {George, Charles}, salary: {19500, 16700}
earns: { (George, 19500), (Charles, 16700)},
M2: INSERT: (19500, 16700) to earns
Sch2: emp(.), salary(.), earns(.,.)
IC: VX 3y (emp(X) = earns(x,y))
VX Vy(earns(x,y) = (emp(x) A salary(y)))
M2 is not a model
Achieving consistency: a model construction

Query languages 2 — Expressive power 2

39

IC (1)

|IC as closed formulas.
Problems: consistency
nonredundancy

Ex.: functional dependences
« in the language of 1. order logic

Vva,b,c,,c,,d,,d,

((R(a,b,cq,dq) A R(a,b,¢,,d;) = €4 = Cy))

< In theory of functional dependencies

AB —» C

Non-redundancy is investigated by the solution of
membership problem.

Query languages 2 — Expressive power 2

40

IC (2)

<+ general dependences
VY s YidX g5 X ((Ag A A AY) = (B Aca By))

where
K, p, qd=>1, m>0,
A; ... positive literals with variables from {y,,...,y,}

B, ... equalities or positive literals with variables from
Y150 ¥ Y XX}
m =0 ... full dependences

m >0 ... embedded dependences

Query languages 2 — Expressive power 2

41

IC (3)

Classification of dependencies:
« typed (1 variable is not in more columns)
< full, embedded
+ tuple-generating, equality-generating
+ functional
inclusion (generally embedded, untyped)
template (g=1, B je positive literal)

Query languages 2 — Expressive power 2

42

General dependences - examples

EMBEDDED, TUPLE-GENERATING
VX (emp(x) = 3y (salary(y) A earns (x,y))

FULL, EQUALITY-GENERATING, FUNCTIONAL
VX,Y1,Yo(€arns(x,y,) A earns(x,y;) = y,=Ys)

FULL, TUPLE-GENERATING, INCLUSION
VX, z (manages(x,z) = emp(x))

FULL (MORE GENARAL)
VX,y,z (earns(X,y) A manages(x,z) = y > 5000)

EMBEDDED, TUPLE-GENERATING, INCLUSION
VX, z (manages(x,z) = 3y (solves(x,y)))

Query languages 2 — Expressive power 2 43

Statements about dependencies (1)

Statement: The best procedure solving the membership
problem for typed full dependencies has exponential time
complexity.

Remark: Membership problem for full dependences is the
same for finite and infinite relations.

Ex.X={A—>B,AcB}
.Bc A
It holds: X = 1 Y= T
e.g., on relation {(i+1,i): i >0}

Query languages 2 — Expressive power 2 44

Statements about dependencies (2)

Statement: Membership problems for general
dependences are not equivalent for finite and infinite
relation. Both problems are not solvable.

Statement: Membership problem for FD and ID is not
solvable.

Statement: Let £ contains only FD and unary ID. Then
the membership problem for finite and also for infinite
relations is solvable in polynomial time.

Query languages 2 — Expressive power 2

45

Statements about dependencies (3)

Conclusion: If the exponential time is still tolerable for
today’s and future computers, then full dependences are
the broadest class of dependencies usable for deductive
databases.

= significant role of Horn clauses in computer science.
Pessimistic view:

+ Generally, completeness can not be achieved.

«+ Generally, consistency can not be achieved.

< Algorithmic complexity can be a real issue. It sometimes
can not be improved and often not solved — an
associated proof procedure does not exist.

Query languages 2 — Expressive power 2 46

Statements about dependencies (4)

+ constraints may make consistence, but associated
models do not match real world facts.

Optimistic view:

« Pessimistic results are general. What are the sets of
real dependencies?

Query languages 2 — Expressive power 2

47

Query languages - problems

+ 1982: Chandra and Harel stated a problem:

Is there a query language (logic), enabling to express
exactly all queries computable in polynomial time

(PTIME)?
Answer: unknown till now.

<« 1982: Immerman and Vardi proved, that the
extension of the 1. order logic by the operator LFP
enables it on the class of all ordered finite structures.

« Another approximation: FP+C (counting operator). It
enables catch up PTIME, e.g., on all trees, planar
graphs and others.

» Remark: counting enables to find the number of items
satisfying a formula.

Query languages 2 — Expressive power 2

48

