
Query languages 2 – Expressive power 1 1

Query languages 2 (NDBI006)

Expressive power - Part 1

J. Pokorný

MFF UK

Query languages 2 – Expressive power 1 2

Content of the course

1. Three semantics of domain relational calculus (DRC). Definite and safe

formulas of DRC. Proof of the equivalence of the relational algebra (RA) and

DRC restricted to definite formulas.

2. Proofs of equivalence of query languages.

3. Transitive closure of a binary relation. Impossibility to express it in relational

algebra.

4. Composition of RA expressions, the least fixpoint approach, minimal fixpoint.

5. Datalog language – its three possible semantics. Evaluation of a Datalog

program without recursion.

6. Evaluation of a Datalog program with recursion - naïve evaluation, method of

differences.

7. Datalog with negation. Stratified Datalog

8. Expressive power of Datalog. A relationship of Datalog to other relational

languages.

9. Logical problems of information systems.

Query languages 2 – Expressive power 1 3

Content of the course

10.Recursive SQL.

11.Graph Databases

12.Tableau query as visual query interface for e-shops, conjunctive query

containment and homomorphism theorem.

13.Tableau query with inequality for e-shops

14.Tableau query and algorithmic complexity of query inclusion.

15.Formal framework for transferability of querying models

16.Datalog with recursion and functional symbols.

17.Datalog with recursion and functional symbols - completeness.

Query languages 2 – Expressive power 1 4

DRC semantics (1)
Assumptions: query expressions {x1,...,xk A(x1,...,xk)}, A is a

DRC formula,

database R*, dom is domain for R; actual domain of formula

A, adom(A), is a set of values from relations in A and

constants in A.

Three problems:

 potential possibility of infinite answer (in the case of infinite

dom)

 situation, when TRUE-assignment of free variables is not

from R*.

 how to implement evaluation of a quantification (in the case

of infinite dom) in a finite time.

Query languages 2 – Expressive power 1 5

DRC semantics (2)

3 semantics of DRC, solving the problems:

(i) unlimited interpretation with restricted output

(ii) limited interpretation

(iii) domain-independent queries

Notation: result of a query Q evaluation in the unlimited
interpretation as Qdom[R*].

Then:

 for (i) the result is defined as Qdom[R*]  adomk, where k is
řád resulted relation.

 for (ii) variables ranges over adom, i.e. Qadom[R*].

Query languages 2 – Expressive power 1 6

DRC semantics (3)

Q.: {x   R(A:x)}

The answer depends on dom(A).

 Query expression defines different queries for each different
domain.

Remark: A query, returning , can be domain dependent in
the case the quantified variable ranges over an infinite set,
e.g.

Q.: {x   y R(x,y) }

Df.: We say that a query expression is domain-independent
(definite) if the answer to it does not depend on dom.

Query language is domain-independent, if each its expression is
domain-independent. The result of Q is equal to Qdom[R*] =
Qadom[R*].

Query languages 2 – Expressive power 1 7

DRC semantics (4)
 evaluation of a domain independent expression in unlimited

interpretation returns the same result as in restricted
interpretation.

Ex.:  BOOK(TITLE:’Introduction to DBS’, AUTHOR:a)

IS NOT definite.

cn (COPY(cn,i)  LOAN(cn,b,dd))

IS definite

cn (COPY(cn,d)  LOAN(cn,b,dd))

IS NOT definite, if variables are untyped or of too
“wide” types

Theorem (Di Paola 1969): Definiteness of A is not decidable.

 The language of domain-independent expressions is not
decidable.

Remark: Relational algebra is a domain-independent language.

BOOK(ISBN,TITLE, AUTHOR)

COPY(C_Number, ISBN)

LOAN(C_Number, Cust_Number, DueDate)

Query languages 2 – Expressive power 1 8

DRC semantics (5)

Notation of DRC:

 in unlimited interpretation with restricted output DRCrout,

 in limited interpretation DRClim

 domain independent expressions DRCind.

Statement: DRCrout  DRClim  DRCind. Moreover,

(i) if Q is a DRC expression, then there is a domain independent

expression Q‘, which after evaluation returns the same result

as Q in unlimited interpretation with restricted output.

(ii) if Q is a DRC expression, then there is a domain independent

expression Q‘, which after evaluation returns the same result

as Q in limited interpretation.

Query languages 2 – Expressive power 1 9

DRC semantics (6)

Proof (sketch): trivially DRCrout and DRClim are at least so powerful
as DRCind, i.e. DRCind < DRClim and DRCrout < DRClim

 We show a power of DRClim

If Q  DRCind, then it returns Qdom[R*], přičemž Qdom[R*] =
Qadom[R*].

Let Q  DRC. Then it is possible to construct Q‘ so that all free
and bound variables in the formula of query Q‘ are restricted to
the active domain. Then D‘adom[R*] = Dadom[R*]. Expression Q‘ is
however domain independent, so DRClim < DRCind. We also
demonstrated the (ii) part of the statement. Thus DRClim 
DRCind.

 It holds, that DRCrout is more powerful than DRClim. A proof of (i)
is technically more complicated (see [Hull and Su 94]).

Query languages 2 – Expressive power 1 10

Safe formulas in DRC

Df.: A safe DRC formula, A, is a DRC formula, which is definite
and syntactically characterizable.

1. , are eliminated

if A contains a disjunction, then is it is a subformula

1(x1,...,xs) (x1,...,xs),

i.e. i contain the same free variables,

3. if A contains a conjunction (maximal), e.g.,

 1 r, r 1, then each free variable in  is limited, i.e.,
at least one of the following conditions holds:

A variable is free in i , which is neither arithmetic
comparison and nor negation,

 there is ix=a, where a is a constant,

 there is ix=y, where y is limited.

Query languages 2 – Expressive power 1 11

Safe formulas in DRC

4.  can be used only in conjunctions of type 3.

Remarks:

 Any safe formula is definite.

 There are definite formulas which are not safe.

Ex.:

x=y IS NOT safe

x=y  R(x,y) IS NOT safe

x=y  R(x,y) IS safe

R(x,y,z)  (P(x,y)  Q(y,z)) IS NOT safe, is definite.

R(x,y,z) P(x,y) Q(y,z) IS safe!

Query languages 2 – Expressive power 1 12

Equivalence of relational languages

4 approaches:

 domain relational calculus (DRC)

 tuple relational calculus (NRC)

 relational algebra (AR)

 DATALOG

We prove: DRC AR

Lemma: Let be a Boolean expression created by using ,,
and simple selections X Y or X k, where , ,,,,=, k
is constant and X, Y are attribute names. Then for E(), where E
AR, there is a relational expression E’, whose each selection is
simple and E()  E’.

Proof: 1. each  is propagated to a simple selection and is
replaced by its negation.

Query languages 2 – Expressive power 1 13

Equivalence of relational languages

2. by induction on the number of operators ,

for of operators - trivial

E() E(1) and E contains at most selections,
which are simple. Then E()E(1)()

E() E(1) and E contains at most selections,
which are simple. Then E() E(1) E()

Ex.: E R( (A1=A (A1 A3 A2 A3)))

then A1 A2  (A1A3 A2 A3)

and E‘ R(A1  A2) R(A1 A3) (A2 A3)

Query languages 2 – Expressive power 1 14

From relational algebra to DRC

Theorem: Each query expressible in AR is expressible in
DRC.

Proof: by induction on the number of operators in relational
expression E.

1.  operators in E.

E  R  {x1,...,xk | R(x1,...,xk)}

E  const. relation  {x1,...,xk | x1= a1...  xk = ak 
x1= b1... xk = bk...}

2. E  E1 E2 by the induction hypothesis there are formulas e1 and
e2 with free variables x1,...,xk

{x1,...,xk | e1(x1,...,xk) e2(x1,...,xk) }

Query languages 2 – Expressive power 1 15

From relational algebra to DRC

3. E  E1 - E2

 {x1,...,xk | e1(x1,...,xk) e2(x1,...,xk) }
4. E  E1i1,...,ik

 {xi1,...,xik | xj1,...,xj(n-k) e1(x1,...,xn)}

5. E  E1  E2

 {x1,...,xm xm+1,...,xm+n | e1(x1,...,xm)  e2(xm+1,...,xm+n)}

6. E  E1 ()

{x1,...,xk | e1(x1,...,xk)xA  xB) }, if A  B

or xA a if   A a

By lemma, it is enough, when  denotes a simple selection.

Query languages 2 – Expressive power 1 16

Semantic definition of definite formulas

Sufficient conditions for definite formulas A:

1. components of TRUE-assignment of A are from adom(A).

2. if A´  y (y), then if for a y0
(y0) TRUE, then y0adom().

3. if A´  y (y), then if for a y0

(y0)  FALSE, then y0  adom().

Remark: 2. and 3. holds for any allowable values of free variables in
(except y).

Remark: explanation of condition 3.

y (y) y (y)

 if for a y0 (y0)  TRUE, then by 2., y0  adom().

Query languages 2 – Expressive power 1 17

Semantic definition of definite formulas

Since adom() = adom(), then

(y0)  FALSE y0 adom().

Statement: Elimination of  and  from a definite

formula leads to a definite formula as well.

Query languages 2 – Expressive power 1 18

From DRC to relational algebra

Statement: Each query expressible by a definite
expression of DRC is expressible in AR.

Proof: by induction on the number of operators in A of the definite
expression {x1,...,xk |A(x1,...,xk)} (+)

 We express adom(A) as expression AR. We denote it as E .

 W alter A, that it contains only , ,.

 The proof will be done for adom(A)k {x1,...,xk |A’(x1,...,xk)}.
When A’ A and A is definite,  leads to expression (+).

By induction:

1.  of operators in A’. Then A’ is atomic formula.

x1 x2 (E  E)(1 2)

x1 a  E(1 a)

R(x1,...,xm) R(... i1 i2 ),i1,, when, e.g., xi1 = xi2

Query languages 2 – Expressive power 1 19

From DRC to relational algebra

2. A’ has at least one operator and the induction hypothesis holds for all

subformulas from A’ with less operators than A’.

 A’(u1,...,um)A
1(u1,...,un) A

2(u1,...,up). Then for expressions

adom(A)m {u|Ai(u)} there are relational expressions Ei.

Transformation leads to .

Ex.: A’(u1,u2,u3,u4)  A1(u1,u3,u4) A
2(u2,u4)

 (E1E) [1,4,2,3] (E2EE) [3,1,4,2]

 A’(u1,...,um)A1(u1,...,um). Then for expression

adom(A)m {u|A1(u)} there is a relational expression E1.

Transformation leads to -, i.e. Em - E1

 A’(u1,...,um)  um+1A
1(u1,...,um, um+1). Then for expression adom(A)m+1

 {u|A1(u)} there is a relational expression E1. Transformation leads to

, i.e. E11,2,...,m

If A’ A, then the answer is not changed.

Query languages 2 – Expressive power 1 20

From DRC to relational algebra
Ex.: w,x R(w,x)  y(S(w,y)  S(x,y))is a definite expression.

Justification: dom(S(w,y)  S(x,y)) = dom(S)

Let y0 dom(S). Then S(w,y0) S(x,y0) TRUE.

So, the condition 3 from sufficient conditions is fulfilled

Eliminating  and , we obtain the definite expression:

w,x(R(w,x)  y(S(w,y)  S(x,y))

Transformation:

S(w,y)  S(x,y)  (SE)1,3,2 (SE)3,1,2

y (-”-) (-”-) 1, 2 we denote as E’

Remark: E’ can be optimized as (SE)1,3 (SE)3,1

 R(w,x) E2 - R

R(w,x)  y(S(w,y)  S(x,y) (E2 - R)  E’

 (-”-)  E2 - ((E2 - R)  E’)

Query languages 2 – Expressive power 1 21

From DRC to relational algebra

Problem: the result leads to a non-effective
evaluation

Optimization:

Let X denote the complement of X w.r.t. E.

It holds: X Y = X  Y

 E2 – ((E2 - R)  E’) = (E2 – (E2 - R))  (E2 - E’)
=

R E’ = R - E’

Visualization: E2
R

E’

Query languages 2 – Expressive power 1 22

Expressive power of DRC (AR)

Q.: Find all subordinates of Smith.

Jamal

Black Smith Newman

Zich Fox

Jakl Chrom

By: union

1 join

projection

Query languages 2 – Expressive power 1 23

Expressive power of DRC (AR)

Q.: Find all subordinates of Smith.

Jamal

Black Smith Newman

Zich Fox

Jakl Chrom

Linder

By

union

2 joins

projection

Query languages 2 – Expressive power 1 24

Query transitive closure (0)

Notions:
Df.: Binary relation R is transitive, if for each (a,b)R and

(b,c)R also (a,c)R.

Df.: Transitive closure of the relation R, R+, is least transitive
relation containing R.

Database notions: relation schema R, relation R*

Ex.: SUP-SUB(Superior, Subordinate) reflects transitive
relationships on a conceptual level.

SUP-SUB* contains only direct relationships, e.g. (Jamal,
Smith), (Fox, Chrom), …

Goal: calculate transitive closure of the relation SUP-SUB*

Assumption: We will consider relations, which are transitive
on a conceptual level.

Query languages 2 – Expressive power 1 25

Query transitive closure (1)

Statement: Let R be a binary relation schema. Then
there is no expression AR, calculating for each
relation R* its transitive closure R+.

Proof:

1. Consider s = a1,a2,...,as, s 1, as a set of constants, for
which no ordering exists, and

Rs = a1a2, a2a3,...,as-1as

Remark: Rs  graph a1  a2 as, i.e., transitivity is
defined by connectivity in a directed graph.

Remark: if an ordering  is defined on s, then

Rs
+(Rs 1Rs )(1  2)

2. We show, that for arbitrary expression E(R) there is s such,
that E(Rs) Rs

+.

Query languages 2 – Expressive power 1 26

Query transitive closure (2)

3. Lemma: Let E be a relational algebra expression. Then for
sufficiently big s

E(Rs) b1,...,bk |(b1,...,bk),

where k 1 and  is a formula in a disjunctive normal form.

Atomic formulas in  have a special form:

bi = aj, bi  aj,

bi = bj + c or bi  bj + c, where c is (not necessarily positive)

constant, where bj + c is abbreviation for “such am, for which
bj = am-c“

Domain of interpretation for assignments to variables bj is s.

Remark: bi = bj + c  bi is behind bj in the distance c nodes.

Query languages 2 – Expressive power 1 27

Query transitive closure (3)

4. Proof by contradiction.

There is E such, that E(R) = R+ and any relation R, i.e.
also E(Rs) =Rs

+ for sufficiently big s

 by lemma, Rs
+ b1,b2 |(b1,b2)

There are two cases:

(a) each clause z  contains an atom of form

b1=ai, b2=ai or b1=b2+ c (b=b1- c)

Let b1b2 =amam+d ,

where m  arbitrary i and d arbitrary c

Query languages 2 – Expressive power 1 28

Query transitive closure (4)

b1=am and b2 =am+d do not meet any clause from .

contradiction (amam+d Rs
+)

(b) in  there are clauses with atoms containing only 

Let b1b2 =am+dam, where neither bi am nor bi  am+d

is contained in , and d 0 is greater than arbitrary c

in b1  b2+ c or b2  b1+ c in (see construction of )

am+d am E(Rs) for sufficient s, but  Rs
+ contradiction

Thus: for arbitrary expression E, always there is s for which

E(Rs) Rs
+

Query languages 2 – Expressive power 1 29

Query transitive closure (5)

5. Proof of lemma – by induction on the number of
operators in E

I.  of operators E  Rs or E is a constant relation

E  b1,b2 | b2 = b1 + 1 and

E  b1 | b1 = c1  b1=c2  b1 = cm,
respectively

II. a) E  E1 E2, E1-E2, E1  E2

E1 b1,...,bk | 1(b1,...,bk)

E2 b1,...,bm | 2(b1,...,bm)

 for and - k=m and therefore

Query languages 2 – Expressive power 1 30

Query transitive closure (6)

E b1,...,bk | 1(b1,...,bk)  (b1,...,bk),

E b1,...,bk | 1(b1,...,bk)   2(b1,...,bk), respectively.

 for

E b1,...,bk bk+1,...,bk+m | 1(b1,...,bk)  2(bk+1,...,bk+m)

!! Then a transformation to DNF follows.

b) E  E1() a  contains either = or 

E b1,...,bk |1(b1,...,bk)  (b1,...,bk)

Query languages 2 – Expressive power 1 31

Query transitive closure (7)

c) E  E1S

We will consider a projection removing one attribute

It is about a sequence of permutations of variables and
elimination of the last component.

The elimination of bk leads to
b1,...,bk-1|  bk(b1,...,bk),where  is in DNF

 by a)
i=1..mb1,...,bk-1 | bk i(b1,...,bk)

we will eliminate  from one conjunct

 in i there are not bk=ai, bi =bk +c, and bk=bi +c

 b1,...,bk-1  i(b1,...,bk-1)

where i does not contain bk  ai , bi  bk +c, or bk  bi +c

Query languages 2 – Expressive power 1 32

Query transitive closure (8)

 in i there is either bk=ai or bi =bk +c or bk=bi +c

substitutions for bk will take place.

The results are adjusted to TRUE

or FALSE

or bt=bj +g

and the following inequalities are added:

bi  aj for s-c  j s,

bi  aj for 1  j c, respectively

Query languages 2 – Expressive power 1 33

Transitive closure functionally

Df.: A composition R ° S of binary relations R, S defined on
domain D is a binary relation

a,b  c D, (a,c)  R*  (c,b)  S* 
Let f be a function assigning to a binary relation R a binary

relation R´ (both relations are defined on D).

Df.: Let R be relational variable and f(R) relational expression.
Then the least fixpoint (LFP) of the equation

R = f(R) (1)

is a relation R* such, that:

R* = f(R*) /fixpoint/

S* = f(S*) R*  S* /minimality/

Df.: f is monotonic if for each two relations R*1 and R*2

R*1 R*2  f(R*1) f(R*2)

Query languages 2 – Expressive power 1 34

Transitive closure functionally

Statement: f is monotonic if and only if

f(R1  R2)  f(R1) f(R2)

Df.: f is additive if and only if

f(R1  R2) = f(R1) f(R2)

Statement: Additive function is monotonic.

Theorem (Tarski): If f is monotonic, then the LFP of equation (1)
exists.

LFP construction: For a finite relation R, we obtain LFP by
repeating application of f.

Initialize R by , then fi-1()  fi().

Then there is n0 1 such that

 f () f1()  fn0() = fn0+1()

Relation fn0() is the LFP of the equation (1).

Query languages 2 – Expressive power 1 35

Transitive closure functionally

Proof: By induction on i, it is shown, that relation fn0() is
contained in each fixpoint of equation (1).

Statement: The transitive closure of a binary relation R*
defined on D is the LFP of the equation

S = S ° R*  R*

where S is a relational variable (binary, defined on D).

Proof: f(S) = S ° R*  R*

 fn() = i=1..n R* ° R* ° ... ° R*

which leads to the transitive closure

i = 1.. R* ° R* ° ... ° R*

Query languages 2 – Expressive power 1 36

Transitive closure functionally

Ex.: Consider the relation schema

FLIGHTS(FROM, TO, DEPARTURE, ARRIVAL)

Task: to express CONNECTIONS with transfers

Solution: CONNECTIONS* is given as the LFP of
equation

CONNECTIONS = FLIGHTS (FLIGHTS 
CONNECTIONS) (2=5 4 7)1, 6, 3, 8

Statement: Each relational algebra expression not
containing difference is additive in all its variables.

Query languages 2 – Expressive power 1 37

Transitive closure functionally

Remarks:

 Non-monotonic expression can have a LFP,

 Not every expression involving the difference
operator fails to be monotone.

Df.: A minimální fixpoint (MFP) of equation (1) is such
fixpoint R*, that there is no other fixpoint, which is
a proper subset of R*.

LFP, then it is the only one MFP.

If there is more MFPs, then they are mutually non-
comparable and no LFP exists.

Query languages 2 – Expressive power 1 38

Databases intensionally

Ex.: Consider predicates

F(x,y) x is a father of y

M(x) x is a man

S(x,y) x is a sibling of y

B(x,y) x is a brother of y

Extensional database (EDB):

F(James, Paul) (1)

F(James, Jerry) (2)

F(Jerry, Veronika) (3)

Query languages 2 – Expressive power 1 39

Databases intensionally

Intensional database (IDB):

M(x):- F(x,y) (4)

S(y,w) :- F(x,y), F(x,w) (5)

B(x,y) :- S(x,y),M(x) (6)

Queries:

Q1: Has Paul a brother?

Q2: Find all (x,y), where x is a brother of y.

Q3: Find all (x,y), where x is a sibling of y.

Remark: EDB + IDB create a logical program (LP)

Query languages 2 – Expressive power 1 40

Solution of LP by the resolution method

EDB as a set of facts

IDB as a set Horn clauses:

F(x,y)  M(x)

F(x,y)  F(x,w)  S(y,w)

S(x,y)  M(x)  B(x,y)

Assumption: Formulas in IDB are universally quantified,

e.g.,

xyw (F(x,y) F(x,w)  S(y,w))

Reformulation of Q1 :z B(z,Paul)

Query languages 2 – Expressive power 1 41

Solution of LP by the resolution method

Resolution method:

 Uses a proof by contradiction

 inference is equivalent to deriving an empty clause
(NIL); in other cases it is not possible to say, whether
clauses is derivable

Principle: A1Ai  B1 C1CjB2

 Unification: by substitutions we try to achieve to do B1

and B2 complementary.

 Deriving a resolvent: If after unification the input has
a form A1AiB and C1CjB, then it is
possible to derive A1AiC1Cj

Query languages 2 – Expressive power 1 42

Solution of LP by the resolution method

Statement: A resolvent is (un)satisfiable, if input clauses were
(un)satisfiable.

The procedure goal: to derive NIL

Justification: W=A1,...,Am, then W A if and only if

A1AmA is unsatisfiable

By the Gödel theorem, unsatisfiability is partially decidable, i.e.
there is a procedure P such that for each formula  the
following holds:

if  is unsatisfiable, then P() terminates and announces it,

if  is satisfiable, then P() either terminates and announces it,
or fails to terminate.

A is a logical

conseqence of W

Query languages 2 – Expressive power 1 43

Solution of LP by the resolution method

Ex.: We add to EDB and IDB B(z,Paul) (7)

and run the resolution method:

(8) S(Jerry,w) :- F(James,w) from (2),(3)

(9) S(Jerry,Paul) from (8),(1)

(10) M(Jerry) from (3),(4)

(11) B(Jerry,y) :- S(Jerry,y) from (10),(6)

(12) B(Jerry,Paul) from (11),(9)

(13) NIL from (12),(7)

Query languages 2 – Expressive power 1 44

Terminology and constraints

 terms: variables or constants

 facts are atomic formulas containing only
constants

 rules are Horn clauses

L0:- L1,…,Ln

where Li are atomic (positive) formulas

 atomic formulas or negations of atomic formulas
are called literals.

 positive and negative literals

 facts are called basic literals

Query languages 2 – Expressive power 1 45

Terminology and constraints

 structure of rules:

L0 head of a rule

L1,…,Ln body of a rule

Remark: Facts and literals are also Horn clauses.

Query languages 2 – Expressive power 1 46

DATALOG - syntax and semantics (1)

1. Datalog program is a collection of facts and rules.

2. Three kinds of predicate symbols:
 Ri R

 Si ... virtual relations

 built-in predicates ,,,,,=

Ri and Si are called ordinary.

Remark: will not conceived as a negation (we will
compare only bound variables)

3. Semantics of logic programs can be built by at least in
three different ways:
 proof theoretic,

model theoretic,

 with fixpoints.

Query languages 2 – Expressive power 1 47

DATALOG - syntax and semantics (2)

 proof theoretic approach
Method: interpretation of rules as axioms usable to a proof, i.e. we
make substitutions in body of rules and derive new facts from
heads of rules. In the case of Datalog, it is possible to obtain just
all derivable facts.

 model theoretic approach
Method: to predicate symbols we associate relations (a logical

model) which satisfy the rules.

Ex.: Consider a logical program LP
IDB: P(x) :- Q(x)

Q(x) :- R(x),
i.e. Q and P denote virtual relations.

Query languages 2 – Expressive power 1 48

DATALOG - syntax and semantics (3)

 Let: R(1) Q(1) P(1)
Q(2) P(2) M1

P(3)
Relations P*, Q*, R* make a model M1 of the logical program

LP.
 Let: R(1) (and other facts have value FALSE). Then

relations P*, Q*, R* are not a model of the LP.
 Let: R(1) Q(1) P(1) M2

then relations P*, Q*, R* make a model M2 of the LP.

Let EDB: R(1), i.e. relational DB is given as
R* =(1).

then M1 and M2 are with the given DB consistent.

Query languages 2 – Expressive power 1 49

DATALOG - syntax and semantics (4)

M2 is even a minimal model, i.e. when we change
anything there, we destroy consistency.

M1 does not make a minimal model.

Remark: with both semantics we obtain the same result.

Disadvantages of both approaches: non-effective
algorithms in the case, when EDB is given by
database relations.

Query languages 2 – Expressive power 1 50

DATALOG - dependency graph (1)

 with fixpoints

Method: evaluating algorithm+relational DB machine

Df.: a dependency graph of a logical program LP

nodes: predicates from R and IDB

edges: (U,V) is an edge, if there is a rule

V :- … U ...

Ex.: extension of the original example

M(x):- F(x,y)

S‘(y,w) :- F(x,y), F(x,w), y  w

B(x,y) :- S‘(x,y), M(x)

C(x,y) :- F(x1,x), F(x2,y), S‘(x1,x2)

C(x,y) :- F(x1,x), F(x2,y), C(x1,x2)

F

M

S

B

Query languages 2 – Expressive power 1 51

DATALOG - dependency graph (2)

R(x,y) :- S‘(x,y)

R(x,y) :- R(x,z), F(z,y)

R(x,y) :- R(z,y), F(z,x)

where C(x,y) … x is a cousin of y, i.e. their fathers are
brothers

R(x,y) … x and y are relatives

recursive datalogical program

F

M

S‘
B

C

R

Query languages 2 – Expressive power 1 52

DATALOG - dependency graph (3)

R, C … recursive predicates

Df.: A logical program is recursive if there is a
cycle in its dependency graph.

Query languages 2 – Expressive power 1 53

DATALOG - safe rules

Df.: safe rule

A variable x occurring in a rule is limited, if it occurs
in the body of literal L of the same rule, where:
 L is given by an ordinary predicate, or

 L is of form x = a or a = x, or

 L is of form x=y or y=x and y is limited.

A rule is safe, if all its variables are limited.

Ex.: safety of rules

IS_GREATER_THAN(x,y) :- x  y

FRIENDS(x,y) :- M(x)

S‘(y,w) :- F(x,y), F(x,w), y  w

Query languages 2 – Expressive power 1 54

Non-recursive DATALOG

 Its dependency graph is acyclic.

 There is a topological ordering of nodes such,
that Ri  Rj implies i < j.

Remark: ordering is not given unambiguously

Ex.: ordering F - M - S - B

Query languages 2 – Expressive power 1 55

Non-recursive DATALOG

Principle of the algorithm (for one virtual relation):

(1) U(x1,…,xk) :- V1(xi1,…,xik),…, Vs(xj1,…,xjs)

(2) for U it is performed

(3) Steps (1), (2) are performed for all rules with U in
their heads and for partial results.

Remark: Due to the acyclicity and topological ordering,
the steps (1), (2) can be always applied for a rule.

transform to joins and selection

apply a projection on the result

apply a union

Query languages 2 – Expressive power 1 56

Non-recursive DATALOG

Convention: variable x  attribute X

Rule rewriting:

 C(x,y) :- F(x1,x), F(x2,y), S’(x1,x2)

1. step:

AUX(X1,X,X2,Y) = F(X1,X) * F(X2,Y) * S’(X1,X2)

2. step:

C(X,Y) = AUX[X,Y]

 for S’

S’(Y,W) = (F(X,Y) * F(X,W)) (Y W)[Y,W]

Query languages 2 – Expressive power 1 57

Non-recursive DATALOG

Other possibilities:

 V(x,y) :- P(a,x), R(x,x,z), U(y,z)

1. and 2. step:

V(.,.) = (P(1=a)[2] * R(1=2)[1,3] * U)[.,.]

Problem: In the rule head, constants, the same variables, and
different orders of variables can occur.

A request on a rectification, i.e., a transformation of rules in such
way, that heads with the same predicate symbol have a tuple
of the same variables.

Query languages 2 – Expressive power 1 58

Non-recursive DATALOG

Ex.: P(a,x,y) :- R(x,y)

P(x,y,x) :- R(y,x)

We introduce u, v, w and do the substitutions:

P(u,v,w) :- R(x,y), u = a, in = x, w = y

P(u,v,w) :- R(y,x), u = x, in = y, w = x

 P(u,v,w) :- R(v,w), u = a,

P(u,v,w) :- R(v,u), w = u

Lemma:

(1) If the rule is safe, then after rectification too.

(2) The original and rectified rule are equivalent, i.e.,
after its evaluation we obtain the same relation.

Query languages 2 – Expressive power 1 59

Non-recursive DATALOG

Statement: The evaluated program provides for each
predicate from IDB a set of facts, which forms

1. the set of just those facts, provable

from EDB by application of rules from IDB.

2. a minimal model for EDB + IDB .

Proof: by induction in the rules ordering.

