
Query languages 2 (NDBI006)

part 0

(revision of basic DB notions)

J. Pokorný

MFF UK

Some rules for presentation

Credit: based on a preparation of a paper for the course colloquium.

Slide presentation: in PowerPoint and presented on the basis of materials

given by the teacher.

Exam: examples in written form (1,5 hours)

Style: Introduction - title, link to the source article, what will it be?

Proofs: only for important theorems

Relationship to lectures: do not repeat things from lectures

Do not use:

– fonts smaller than 18 p.

– "wild" templates - just a simple structure + color

– a lot of text on one slide

Do not change slides very quickly: rather explain in detail what it is about

Conclusion: summarize the talk

Then: send your presentation to pokorny@ksi.mff.cuni.cz

lecturing  talking !!

Basic notions

 Relational data model (RDM)

 Relational algebra (RA)

 Domain Relational Calculus (DRC)

Relational data model

Relational schemas: Shows(C_name, F_name, Date)

Cinema(C_name, Address, Head_of_c)

Movie(F_name, Actor, Director)

Shows C_name F_name Date

Flora Top gun 3.2.2018

Flora Black Panther 5.2.2018

Atlas Yellowstone 12.2.2018

Atlas Top gun 15.2.2018

Atlas Black Panther 20.2.2018

Relational algebra – query language

Assumptions: DB schema R; R(A), S(B)  R

 projection of R on the set of attributes C, where C  A

Notation: R[C]

 selection of R by a selection condition 

Notation: R()

 join of R and S

Notation: R  S

Ex.: (Shows(Cinema_n = Atlas)[F_name, Time]  Movie)[Actor]

Other: union , intersection , difference -,

Cartesian product 

What is enough: , , -, projection, selection. Other operations
are derivable from the basic ones.

Relational algebra – query language

Other (derived) operations:

– join of relations (natural, -join, semijoin)

– division of relations

– composition of relations

! outer join is out of basic RMD

it requires empty values

Remark: Properties of relational operations

allow to do algebraic query optimization.

DRC - domain relational calculus

DRC is a subset of 1st predicate order calculus

– terms: variables, constants

– predicate symbols: R, comparisons (=,,,,,)

– logical connectives (, ˄, ˅, )

– quantifiers (, )

Other notions: free and bound variables

TRUE-assignment of free variables, interpretation of

predicate symbols, evaluation of formulas

Query in DRC is an expression {x1,…,xkA(x1,…,xk)}

DRC - domain relational calculus

Ex.:

{x,yCinema(x,’Národní třída’,y)}

{actor,dirMovie(‘Top gun‘,actor,dir)}

{actordir Movie(‘Top gun‘,actor,dir)}

syntactical simplification:
– introducing attribute names

– removing unnecessary 

{a,fnc (Shows(Cinema_n:c,F_name:fn)

˄ Cinema(Cinema_n:c, Address:a))}

DRC - domain relational calculus

A more complex query:

Q: Find films, they give in all cinemas, where they give

something.

{f c(Shows(Cinema_n:c) Shows(Cinema_n:c,

F_name:f))}

Problems:

– how to quantify, when the domain is infinite

– how to solve some queries with negation and disjunction

Ex.: {x R(x)}

{x,y R(‘a’,x) ˅ S(‘b’,y) }

Solution: limited interpretation, save expressions

What is a database query, what is a

query language?

What is a database query, what is a

query language?

Q: Find films, they give in all cinemas, where they

give something.

{f c(Shows(Cinema_n:c) Shows(Cinema_n:c, F_name:f))}

{f c(Shows(Cinema_n:c) ˄ Shows(Cinema_n:c,

F_name:f))}

The expressions denote the same query.

What is a database query, what is a

query language?

 (Database) query of type (S T) is a partial recursive
function q, which for each database S* provides an
answer q(S*) of type T, or it is not defined on S* .

Restrictions:
– values in q(S*) are from S*,

– the answer to a query does not depend on representation of
data in DB,

– elements of DB are conceived as non-interpreted objects.

 A query language over S is a set of expressions over
a finite alphabet + meaning function assigning to
each expression a query.

Expressive power of relational

languages

 Expressive power of a query language L over

S is a set of all queries M(L), which are

expressible by L.

L1 < L2 if and only if M(L1)  M(L2)

J1  J2 if and only if M(L1) = M(L2)

 Query language is called complete, if it can

express all database queries.

Expressive power of relational

languages

 Programming vs. relational algebra

– relational algebra is a high-level language

 A query language is called relationally

complete, if it is (at least) as expressive as

the relational algebra.

 Commercial world:

– SQL,

– languages forms,

– picture languages

Extension of relational languages

Problems with queries:

 Query on the number of something (COUNT), or
AVARAGE, or calculating the value in a n-tuple,

 Find all subordinates of John (in all levels)

(transitive closure of a relation).

Question: is it possible to propose a non-procedural
computationally complete language?

Partial solutions:
– introducing aggregation functions

{c, numbernumber=COUNT(fShows(Cinema_n:c, F_name:f))}

– introducing a least fixpoint

– procedural constructs: while, repeat, ...

Compromise in practice: SQL + stored procedures

