
1

SQL Language:

news from the 2003 standard

Jaroslav

Pokorný

Query languages 1

Query languages 1 2

SQL:2003

 a lot of corrections and bug fixes

 several new features

 data types

• operations

• predicates

 operation MERGE

 OLAP: TABLESAMPLE

 generated columns

 the identity columns and generators

 part 14 SQL/XML

Query languages 1 3

New data types

 BIGINT

 MULTISET

Rejected types (from 1999)

 BIT

 BIT VARYING

Query languages 1 4

BIGINT

 Precision of BIGINT  precision of

INTEGER  precision of SMALLINT

 based on INT and SMALLINT

 the same operators like SMALLINT and

INTEGER

Query languages 1 5

MULTISET
 types of collections:

 MULTISET

 ARRAY

 multiset is a non-sorted, variable-length

collection whose elements have a specified

type

 MULTISET - no maximal cardinality is specified

 ARRAY - max. cardinality is not mandatory

Query languages 1 6

MULTISET - definition

 A INTEGER MULTISET

 B ROW(F1 BIGINT, F2 VARCHAR(4000)) MULTISET

 C INTEGER MULTISET()

 empty multiset of integers (not NULL!)

 D INTEGER MULTISET(2, 3, 5, 7)

 non-empty multiset with several integers

 E INTEGER MULTISET(SELECT A
FROM R WHERE A > 10)

multiset of integers given by a
SELECT

Query languages 1 7

MULTISET – ops. and functions

/* multi stands for a multiset */

 CARDINALITY(multi)

 returns the number of elements in multi

 SET(multi)

 returns content of multi without duplicities

 ELEMENT(multi)

 the cardinality must by 1

 returns the element (singleton)

Query languages 1 8

MULTISET - ops. and functions

 UNNEST(multi) AS name

 returns the individual elements of multi as

rows of a virtual table name

UNNEST MULTISET (2, 3, 5, 7) AS P

7

5

3

2

P

Query languages 1 9

MULTISET – ops. and functions

 multi1 MULTISET op [quantifier] multi2

op — UNION, EXCEPT, INTERSECT

quantifier — ALL or DISTINCT

Note: similar to the set operators

UNION, EXCEPT a INTERSECT

Note: quantifier ALL is implicit

Query languages 1 10

MULTISET – ops. and functions

SELECT

A MULTISET INTERSECT DISTINCT B

FROM R

WHERE CARDINALITY(B) > 50

Query languages 1 11

MULTISET – ops. and functions

New aggregation functions for multisets

Assumption: a group is given by GROUP BY or by a

collumn

 COLLECT — transforms values in a group into the

multiset

 FUSION — creates a union of all multisests in a group

— amount of duplicities of a value = sum of duplicities of

the value in each multiset in a group

 INTERSECTION — intersects all multisets in a group —

amount of duplicities on a value in the result = minimum

of duplicities on the value in all multisets in given groups

Query languages 1 12

MULTISET – ops. and functions

CREATE TABLE Logins(

session_id INT NOT NULL PRIMARY KEY,

successful BOOLEAN NOT NULL,

user_id INT,

attempts ROW(VARCHAR(128), VARCHAR(128))

MULTISET);

SELECT user_id,

COLLECT (session_id) AS s_ids,

FUSION (attempts) AS all_attempts,

INTERSECTION (attempts) AS common_attempts

FROM Logins

WHERE Successful

GROUP BY user_id;

username, password

Query languages 1 13

MULTISET – ops. and functions

A part of Logins for the user with Id = 8 and his/her
successful attempts

Logins: session_Id user_Id attempts

a 8 multiset[(1,x),(2,y)]

b 8 multiset[(1,x)]

c 8 multiset[(1,x),(3,h)]

Result (1 row for the user with Id = 8)

s_ids all_attempts common_attempts

multiset[a,b,c] multiset[(1,x), (1,x), multiset[(1,x)]

(1,x), (2,y), (3,h)]

Query languages 1 14

New predicates

 comparison (multiset!) operators = and <>

 [NOT] MEMBER

 [NOT] SUBMULTISET

 IS A SET, IS NOT A SET

Query languages 1 15

Predicate MEMBER

h [NOT] MEMBER [OF] multi

 h must be compatible with the type of

elements in multi

 FALSE if h is not in multi or h is empty

 TRUE if h is equals to any element in

multi

 UNKNOWN if any element in multi is

NULL

Query languages 1 16

Predicate SUBMULTISET

multi1 [NOT] SUBMULTISET [OF] multi2

…element types from multisets have to be

compatible

 relation „be a submultiset“

 TRUE if multi1 = multi2 and each

value in multi1 has a correspondent value

in multi2

Query languages 1 17

Predicate SET

multi IS [NOT] A SET

 multi is a multiset

 TRUE if there are no duplicities in multi

 max 1 NULL value in the set

Query languages 1 18

MERGE

 combines INSERT and UPDATE statements

 rows of input (reference) table are divided into

two groups according to predicate P:

insert source table (IST) if P is FALSE or

UNKNOWN

update source table (UST), if P is TRUE.

Query languages 1 19

MERGE

 IST rows are inserted into result table R.

 each row in R which equals to a row in

UST is updated.

 if there are more equal rows in R for one row

from UST, an error is raised

 Syntax is done by MATCHED and NOT

MATCHED keywords

Query languages 1 20

MERGE

MERGE INTO table [AS name]
USING reference_table
ON condition
WHEN MATCHED THEN

SET column = value

MERGE INTO table [AS name]
USING reference_table

ON condition

WHEN NOT MATCHED THEN
INSERT [(a_list_of_columns)]
VALUES (a_list_of_values)

Query languages 1 21

MERGE

MERGE INTO store AS ST

USING (SELECT prod_id, description, amount

FROM import) AS IM

ON (ST.prod_id = IM.prod_id)

WHEN MATCHED THEN

UPDATE SET amount = ST.amount + IM.amount

WHEN NOT MATCHED THEN

INSERT (prod_id, description, amount)

VALUES (IM.prod_id, IM.descr, IM.amount)

store(prod_id, description, amount)

import(prod_id, description, amount, price)

Query languages 1 22

TABLESAMPLE

 new feature for OLAP

 evaluation of aggregation functions in

samples derived from DB data

 faster application development in the case

of a big DB

 two different sampling methods:

BERNOULLI and SYSTEM

Query languages 1 23

TABLESAMPLE

 BERNOULLI: sample table consists of appr. %amount of
original table; probability of appearance a given row in the
sample is %amount independently of every other row.

 SYSTEM: sample table consists of appr. %amount of
original table; probability of appearance a given row in the
sample can depend on rows already inserted into the
sample

 REPEATABLE: amount of repeated operation calls
(amount_op) generates the same sample for the same
source.

TABLESAMPLE {BERNOULLI  SYSTEM}

(%amount) [REPEATABLE(amount_op)]

Query languages 1 24

TABLESAMPLE

Q.: Guess appr. estimation of the total

salary for each department

SELECT dept, SUM(salary) * 10

FROM employees

TABLESAMPLE BERNOULLI (10)

REPEATABLE (5)

GROUP BY dept

Query languages 1 25

Generated columns
 original columns of table: base columns

 generated columns - their value is computed from 0 or
more base columns of the same row

CREATE TABLE employees (

emp_ID INTEGER,

dept string(6)

salary DECIMAL(7,2),

addition DECIMAL(7,2),

total_salary GENERATED ALWAYS AS

(salary + addition),

user GENERATED ALWAYS AS
(CURRENT_USER))

 Values of generated columns are calculated automatically
with INSERT into the table.

Query languages 1 26

Identity columns & generators

 identity column: mechanism for automatic

key population

 generator: used for generation of the next

value of a sequence

 together provides the mechanism for

automatic key generation for identity

columns

Query languages 1 27

Sequence generators

Parameters:

 data type (numeric)

 start value

 increment (positive or negative, 1 by default)

 minimal and maximal values

 cycle (when the maximum value is reached, it

starts from the beginning)

 external (explicit object of the schema) or

internal (part of another schema object, column

for example)

Query languages 1 28

External generators

CREATE SEQUENCE s_name AS type

START WITH value

INCREMENT BY value

MAXVALUE value

CYCLE

 possibilities:
• NO CYCLE

• NO MAXVALUE, MINVALUE, NO MINVALUE

generator

options}

Query languages 1 29

Sequence generators

 is initialized to a base value Z

 generation of the next value:

NEXT VALUE FOR s_name

 returns Z + N *incremental_value, for N  0

 if computed value > MAXVALUE (or < MINVALUE) and

NO CYCLE, then raise exception

Query languages 1 30

Sequence generators

Examples:

INSERT INTO Order

VALUES (NEXT VALUE FOR order_id, ‘prod1’, 2);

CALL myproc(NEXT VALUE FOR order_id);

SET J = J + NEXT VALUE FOR order_id ;

Order(order_id, prod, amount)

Query languages 1 31

Sequence generators

 value of start, max, min, increment, and

cycle/nocycle can be changed by alter

statement

ALTER SEQUENCE s_name

RESTART WITH new_base_value

 removing of sequence

DROP SEQUENCE s_name

Query languages 1 32

Internal sequence generators

 GENERATED ALWAYS or GENERATED BY

DEFAULT

 ALWAYS — means UPDATE on column is not

allowed;

INSERT requires OVERRIDING SYSTEM

VALUE (privilege)

 BY DEFAULT — INSERT or UPDATE allowed;

the value is generated during INSERT, if it is not

specified in statement

Query languages 1 33

Internal sequence generators

CREATE TABLE Employees (
em_id INTEGER

GENERATED ALWAYS AS IDENTITY
START WITH 100
INCREMENT 1
MINVALUE 100
NO MAXVALUE
NO CYCLE,

salary DECIMAL(7,2), ...,
)

Query languages 1 36

Conclusion

 These extensions support creating analytical

functions in SQL, i.e., they are usable for

OLAP and now for so called Big Analytics.

