Language SOQL.:
operator Cube

J. Pokorny
MFF UK

Query languages 1

Content

m Motivation for CUBE operator
s GROUP BY limits
= how to do aggregations

m CUBE and ROLLUP operators
m Conclusions

Query languages 1

Data analysis

Sﬁread Sheet

Analysis &
Hypothesis
formulation

Ex.: Car market analysis

We are interested in the influence of the car
model, colour, and year of production to the
amount of sold cars. We do not care about
the dealer and the date of sale.

Data warehouses

DW (Data Warehouse) denotes a database
architecture used for a maintenance of historic
data which are obtained from one or more
operational databases.

Typically, these data is cleaned and restructured
to support queries, summaries, and analyses.

Query languages 1 3

OLAP

m OLAP (Online Analytical Processing)

m Principle of modelling: dimensions, facts

m dimensions
e can be hierarchical
* have attributes

m facts
« attributes dependent on dimensions

Ex.: Car market
Dimensions: Model, Year, Colour
Facts: Amounts of sold cars

Query languages 1

Example — star schema

MODEL dime“SiOna‘
Type tab\es
Description ’
Number of seats SALES
Class
N I
ribu tes SalesOrg ID
a Colour ID
COLOUR Quantity
Colour ID , Cost
= Revenue
Name ‘ Profit

Query languages 1

Key

SALES ORGANIZATION

SalesOrg ID

Representative
Office

fact

&~

factS
Fig. 3: Star schema

OLAP and DW design

Criteria

OLAP

OLTP

Queries

In part, not predictable,
(answer time: seconds to minutes)

Predictable
(answer time: 0-5 seconds)

Data contents

Several years,
Deduced and aggregated data

Current periods,
Possibly, short histories

Data organization

The investigation can extend to
cover the whole of the enterprise

Application oriented

Dimensionality

Frequently multi-dimensional

Two dimensional

Use of data

Mostly unstructured, the
investigation is at the core

High degree of structuring
(transaction oriented and enables
location of individual data records)

Information types

Formatted or, resp., unformatted
and internal/external information

Formatted and internal information

Redundancy Monitored redundancy (star and | Minor
snowflake)
Access Mainly reading Reading and writing

Query languages 1

OLAP

m n-dimensional data structures

m possiblilities of representation:
m one table for all
m table for each dimension + table of facts

m data cube
- evaluation:%
« aggregation functions COUNT, SUM, MAX, ...
» operator GROUP BY

Query languages 1

Problems with GROUP BY

m Simple queries: common aggregations like
SELECT Model, Country, SUM(Amount)
FROM Sale
GROUP BY Model, Country;

m More complex: Which model is a bestseller in
Slovakia?

m Limits of aggregation constructions:
* histograms
* roll-up
* cross-tables

Query languages 1

Histograms

m Standard SQL has no statements for
histograms construction

EX.. we have day weather-forecast, we
want to aggregate days to weeks or
months

m Histograms can be computed using
nested queries

Query languages 1

Histograms

Modern SQL systems support histograms
directly (it Is not necessary to use nested
gueries as in SQL92)

SELECT month, area, MIN(temperature)

FROM Weather

GROUP BY Month(time) AS month,
Area(latitude, longitude) AS area

Query languages 1

Roll-up, drill-down

m data can be aggregated into different dimensions levels
® we want to move through the levels
up ---- roll-up,

down ---- drill-down

by: Model, Year, Colour

/ by: Model, Year

— by: Model

Model| Year [Colour| T 1 .
|IChevy | 1994Jblack 50
white 40
90
1995|black 85
white 115
200
290

Query languages 1

Where to put aggregated values?

m Disadvantages of the previous representation:
m empty values in rows
m It is not a relation
= too many attributes (domains)
m Partial solution:
m it is suitable to store aggregated values directly to the table
m let us add columns which provide aggregated values for each row
m disadvantage: it is out of the relational data model

Year/Colour
Model 1994 Total 1995 Total Total
blackwhite black | white
[Chevy 50 40 90 85 115 200 290
Ford 50 10 60 85 75 160 220
Total 100 50 150f 170 190 360 510

Query languages 1

Where to put aggregated values?

Solution: relational representation

m special value ALL

m ALL means that we want to all values of a

domain in this place.
m ALL() defines a set
Ex.: ALL(Model)={Black, White}

Query languages 1

ModellYear |[Colour |[Amount
IChevy | 1994pplack 50
IChevy [1994)white 40
[Chevy | 1994JALL 90
IChevy | 1995plack 85
IChevy | 1995Mwhite 115
IChevy [1995ALL 200
IChevy JALL JALL 290

10

How to use SQL?

SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(amount)

FROM sale
WHERE Model='Chevy’

UNION

SELECT Model, ‘ALL’, ‘ALL’, SUM(amount)
FROM sale

WHERE Model='‘Chevy’
GROUP BY Model
UNION
SELECT Model, Year, ‘ALL’, SUM(amount)
FROM sale
WHERE Model='‘Chevy’
GROUP BY Model, Year
UNION ...

m or several SELECT statements without ALL
Query languages 1

11

Cross table

m Let us change relational representation and we obtain a
cross table.

= values of dimensions are placed in headings of rows
and columns in a “two-dimensional space”

m construction in SQL: GROUP BY + UNION
m Problem: what, for example, Ford? The next table.

year /éﬁ;iﬂTwna

Chevy | 1994 [1995 | ALL
black 50 85/ 135
colour \white 40 115/ 155
ALL 90| 200 290

Query languages 1

12

Operators CUBE and ROLLUP

Aggregate
]
Sum Group By
(all)
by Colour
m solution: operators —
Sum
ROLLUP and
CUBE white
m generalization of by Model

GROUP BY, or
cross table

Query languages 1

Cross table
Chevy Ford by Colour

T

Sum

Data Cube
and sub-spaces of aggregates

by Model & Colour

by Colour
13

CUBE - the first idea

m EX.: we are constructing a data cube from three attributes

result is similar to real 3D cube C

edges of C represent the domains of attributes, cells content
represent facts

each cell corresponds with one SQL group

we place aggregated value on each margin of C; it is constructed
by application of GROUP BY operation in one dimension

we place the values aggregated by two dimensions on the edges
of C, starting from the beginning of the cube

the super-aggregation (by all dimensions) is placed in the “origin”
of the cube C

m Data cube Is a multi-dimensional data model, where each
domain contains a special value ALL.

Query languages 1

14

CUBE — how It works

m Operator CUBE works like this:

m it is equivalent to the collection of standard GROUP BY
applications for all subsets of specified attributes (groupings),

m super-aggregates are added to the result

m what is added: if there is N attributes, there are 2N-1
aggregated values

m if C,= |[dom(A) |, ie<1,N>, then the size of the cube is
[(C, + 1).

m In CUBE processing, aggregations are processed all-
together in one operation for all cells

m Remark: MS SQL Server 2005 - CUBE was 2x faster
than GROUP BY and UNION

Query languages 1 15

Syntax

GROUP BY:

GROUP BY <all_attributes to aggregate>
<all_attributes_to_aggregate> ::=
{(<column_name> | <expression>)

[AS <name>]

L)

Query languages 1

16

Reduction of aggregation groups

m Sometimes It Is useless to build the whole
cube.

m Sometimes any combination of the
attributes (dimensions) are unnecessary
(example: application of CUBE to
attributes day, month, year)

s GROUPING SETS - grouping by a list
m ROLLUP — only hierarchical aggregations

Query languages 1 17

GROUPING SETS

m EXx.;: Car market
Dimensions: Model, Year, Colour
Facts: Amounts of sold cars

m explicit list of of aggregations

SELECT Model, Colour, Country, SUM(Amount)

FROM Sale

GROUP BY GROUPING SETS ((),(Model),
(Colour, Country))

Query languages 1 18

Operator ROLLUP

m operator ROLLUP is ,low-cost”, it produces only the
following aggregates

Vi, Vo by Vi, T0O),
Vi, Vo, ..., ALL, f()),

(v, ALL, ... ,ALL, (),
(ALL, ALL, ... ,ALL, f())
m Subsets with first attribute value ALL are not included
Into aggregation result (except the super-aggregate)
m less results than the CUBE operator
m not applicable for all queries solved by CUBE
(Q.: ,How many white cars were sold?“ does not work!)

Query languages 1 19

Operator CUBE

Model [Country [Colour |[Amount
Chevy |CZ white 45
Chevy |CZ yellow 18
Chevy |CZ black 78
Chevy [SK white 41
Chevy [SK yellow 52
Chevy [SK black 61
Ford CZ white 28
/ Ford |CZ yellow 47
Ford CZ black 30
Ford SK white 21
Ford SK yellow 46

SELECT agg_amount = SUM(amount),
Model, Country, Colour

FROM Sale

GROUP BY CUBE

(Model, Country, Colour);

\

Query languages 1

20

Operator CUBE __—~ 36rows
Agg_am Model Country Colour 180 Ford ALL ALL
45 Chevy Cz white 475 ALL ALL ALL
18 Chevy Cz yellow /3 ALL CZ white
78 Chevy cz black 65 ALL Cz yellow
141 Chevy o4 ALL 108 ALL CZ black
41 Chevy SK white 246 ALL Cz ALL
52 Chevy SK yellow 62 ALL SK white
61 Chevy SK black o8 ALL SK yellow
154 Chevy SK ALL 69 ALL SK black
205 Chevy ALL ALL 229 ALL SK ALL
28 Ford C7 white 86 Chevy ALL white
49 Ford ALL hit
47 Ford cz yellow o white
135 ALL ALL white
30 Ford Cz black
70 Chevy ALL yellow
105 Ford Cz ALL
_ 93 Ford ALL yellow
21 Ford SK white
q ’ 163 ALL ALL yellow
F SK
46 x yeow 139 Chevy ALL black
8 Ford =K black 38 Ford ALL black
s Ford SK ALL 177 ALL ALL black

Operator ROLLUP

—

Model [Country [Colour Amount
Chevy |CZ white 45
Chevy |CZ yellow 18
Chevy |CZ black 78
Chevy |SK white 41
Chevy |SK yellow 52
Chevy [SK black 61
Ford CZ white 28
Ford CZ yellow 47
Ford CZ black 30
Ford SK white 21
Ford SK yellow 46

Model, Country, Colour
FROM Sale
GROUP BY ROLLUP
(Model, Country, Colour);

SELECT agg_amount = SUM(amount),

Query languages 1

\

22

ROLLUP

z| v 2 = 2| x| X
S 2|3|S|H23 W Q2223 | TC| Q|6
| Z|E|FIEIZISEITIEIZIEIE|E|3 |8 8| B
222 | 2|8 =21 2|28 L[|
N SN T T TR Y T i
33|88 (35|55 5| 2| 3| 2|2|2|2|2|2|2
| < L[| || C ||| L[| L
olalb|d|ldblL|ld|lLlLld]Ssld S|l S|l
ol2|H|A|R|R|(A|H|2|H|e|s|lH|e|le|H2|2L|la|H
FAAAAAA,AAAmu_._.AmuFAmuFA
o|lw | © o LD m| P N-
m | w0 oo | © | » D|m oD
®© | ~ D | S A ™M O D N-
FNFIN|e|R|J|o|o|0|J|D|F|[B|F|D|B[DB|v| T
1
1
1
—
SRR I I R - I) B R - A R R B o
—rcl=s|ld|lcl=|loc|d|ld|lcl=|lc|d|lc|=|c]|
o'l o|a|L[ST| ||| <|ZT|o(a|<|=S|o|a|<
O ! > > > >
|
|
u
>
bl
r—
ﬂ“ZZZZKKKKuZZZZKKKK
WHCCCCSSSSACCCCSSSS
O
“
“
|
= |
O, v|TlT|T| T BT
Sltol|lo|lo|lov|lo|lo|lo|lo|lo|ls|I 515585151 5|5
o o|oc|o|o|o|o| oo
clelc|lcls|lclslsl<I2ISI2IRIRIRIRIE
=000 I0I0|0]0]0|0
1
|
|
=
a_
hw|o|lo|F (a9 FIDB|o(n|o|8|d|©|wp|w
g_
<
1

Relationships of GROUP BY, CUBE, and
ROLLUP

m The following algebraic laws hold:
= CUBE(ROLLUP) = CUBE
= CUBE(GROUP BY) = CUBE
= ROLLUP(GROUP BY) = ROLLUP

m Meaningful hierarchical order of the operators:
GROUP BY <attributes _to _aggregate>
ROLLUP <attributes to aggregate>
CUBE <attributes to_aggregate>

Query languages 1 24

Syntax

From CUBE to ROLLUP:

GROUP BY [<attributes _to aggregate>]
[ROLLUP <attributes to aggregate>]
|[CUBE <attributes_to aggregate>]

m after GROUP BY 1tis allowed to use more
ROLLUP and CUBE

m each operator generates lists of attributes
for aggregations (groups); then their
Cartesian product is included in the result

Query languages 1 24

More aggregations

SELECT Model, Colour, Country, SUM(Amount)
FROM Sale

GROUP BY ROLLUP (Model),
ROLLUP(Colour, Country)

generates groupings:
{Model, ()} X {(Colour, Country), (Colour), ()}

= { (Model, Colour, Country), (Model, Colour),
(Model), (Colour, Country), (Colour), () }

Query languages 1 26

Value ALL

m problems with ALL as a special value:
® many special cases

m If ALL represents the set, then the remaining values of
the domain have to be of simple types

m the implementations of ALL is therefore as
follows:
m it is used NULL instead of ALL
m function ALL() is not implemented

m function GROUPING() is implemented to differentiate
between NULL and ALL

Query languages 1 27

Value ALL

m former: value ALL
® NOW: In data space the value NULL

m value TRUE In t
expresses that t

m former : (ALL, A
H NOW .

ne corresponding field
ne NULL means ALL

L, ALL, 941)

(NULL,NULL,NULL,941, TRUE,TRUE, TRUE)

Query languages 1

28

GROUPING

m NULL value in the place of ALL is called
grouping (grouping NULL)

m Function GROUPING differentiates
grouping NULL value from normal (non-
grouping) NULL
mreturns 1, if it is the grouping NULL (i.e. ALL)

m returns O, If it Is the non-grouping NULL or
there is a non-NULL value there.

Query languages 1 29

GROUPING

= \We can write:

SELECT Model, Year, Colour, SUM(Amount),
GROUPING(Model),

GROUPING(Year),

GROUPING(Colour)

FROM Sale
GROUP BY CUBE Model, Year, Colour.

Query languages 1 30

GROUPING()

m INSERT INTO Sale

VALUES (NULL, ‘SK’, NULL, 229);

m it IS Impossible to differentiate this new row from
another one which express aggregations of CUBE

m the only possibility is the GROUPING() function

Query languages 1 31

ModelCountryColour |Amouni
NULL [SK NULL 229
G RO U P I N G () Chevy [CZ white 45
Chevy |CZ yellow 18
Chevy [CZ black 78
Chevy [SK white 41
SELECT Agg_amount = SUM(Amount), gﬂg\x gi ﬁfa'l'cokw gi
Model, Colour, Country Ford CZ White 58
FROM Sale Ford |CZ yellow 47
Ford |CZ black 30
GROUP BY Model, Colour, Country Ford Sk Wwhite 51
WITH CUBE; Ford [SK yellow 46
Ford [SK black 8
45 Chevy | white CZ
41 Chevy | white SK
86 Chevy | white | NULL
ALL Grouping(Model) =1 229 NULL | NULL SK
NULL Grouping(Model) =0 <
229 NULL | NULL SK

Query languages 1

ModelCountryColour |Amouni

NULL [|SK NULL 229

Chevy [CZ white 45

G RO U P I N G () Chevy [CZ yellow 18
Chevy [CZ black 78

Chevy [SK white 41

/Chevy SK vellow 52

Chevy [SK black 61

SELECT Ag_amount = SUM(Amount), [Ford [CZ white 28
Ford |CZ yellow 47

MOdeI’ _ Ford [CZ black 30
‘all_models’=grouping(Model), Ford [SK white 21
Country, Ford [SK yellow 46
Ford [SK black 8

‘all_countries’=grouping(Country),

Colour,

‘all_colours’=grouping(Colours)
FROM Sale

GROUP BY CUBE Model, Colour, Country;

T~

Query languages 1

\.

33

GROUPING()

45 Chevy 0 CZ 0 white 0
41 Chevy 0 SK 0 white 0
86 Chevy 0 NULL 1 white 0
229 NULL 0 NULL 0 NULL 0
229 NULL 1 SK 0 NULL 1

Query languages 1

34

Non-standard: from NULL to ALL in T-SQL

SELECT Ag_amount = SUM(Amount),

Model, /

Colour=ISNULL(Model,’ALL), |

Country

FROM Sale

GROUP BY

CUBE Model, Colour, Country;

\ 141 | Chevy | NULL | CZ

154 | Chevy | NULL | SK
295 | Chevy | NULL | NULL
105 | Ford | NULL | CZ

Query languages |

ModelCountryColour JAmoun;
NULL [SK NULL 229
Chevy [CZ white 45
Chevy |CZ yellow 18
Chevy [CZ black 78
Chevy [SK white 41
Chevy [SK yellow 52
Chevy |SK black 61
Ford [CZ white 28
Ford [CZ yellow 47
Ford |CZ black 30
Ford [SK white 21
Ford [SK yellow 46
Ford [SK black 8

35

Non-standard: from NULL to ALL in T-SQL

SELECT Units = SUM(Amount),
Model = CASE WHEN (grouping(Model)=1) THEN ‘ALL
ELSE ISNULL(Model, ‘N/A’)
END,
Country = CASE WHEN (grouping(Country)=1) THEN ‘ALL
ELSE ISNULL(Country, ‘N/A’)
END,
colour = CASE WHEN (grouping(Colour)=1) THEN ‘ALL’
ELSE ISNULL(colour, ‘N/A’)
END

FROM Sale

GROUP BY ROLLUP Model, Country, Colour

Nt.: N/A - Not-Applicable

Query languages 1 36

Conclusions

m Operator CUBE generalizes and unifies:
m aggregates
m group by
= roll-up and drill-down
m Cross tables

m Interesting problems:
m evaluating CUBE for different aggregation functions

= implementation (hashing, 2N algorithm, CUBE
algorithm)

Query languages 1

37

Conclusions

m Operators CUBE and ROLLUP are
standardized in SQL:1999.

m Creation of a data cube requires a special
Implementation.

m Querying strategy: restriction of queried data by
specialized query (WHERE), then application of
CUBE operator

m The next extension in practise: mainly Microsoft
— MDX (MultiDimensional EXpressions)

38

