
Query languages 1 1

Query languages 1 (NDBI001)

part 2

J. Pokorný

MFF UK

Query languages 1 2

Content

1. Introduction – why more database technologies?

2. Object-oriented databases (ODMG 93)

3. Object-relational databases

3.1 Extensibility, user defined types and functions

3.2 Real ORDBMS (SQL:1999, 2003 and others)

4. Conclusions

Query languages 1 3

Why more DB technologies

New Application Requirements:

 new types objects and functions

 OO analysis and design vs. relational DB

Goal: integration and

data management in one system

Database

Spreadsheet

Pictures

Mail

Maps

Documents

DBMS

”Relational database

reminds a garage, that

forces you to disassemble

your car and save parts to

the drawers..."

Query languages 1 4

Object-oriented databases

object data model
– in accordance with the natural world view (entity  object)
– definition of complex objects and their manipulation

RDBMS

powerful OLTP

data availabiity

confidentiality of data

tools for data management

standard language interface

memory management

parallel data processing

integrity

operations on complex objects

recursive structures

abstract data types

interface to OO language

complex transactions

OODBMS

Functionality of relational and

OO DBMSs

Query languages 1 5

Object-oriented databases

1993: consortium ODMG (Object Data Management

Group) of leading OODBMS vendors  design of

the ODMG-93 standard.
– superset of the more general Common Object Model (COM) created

by the Object Management Group (OMG). Its definition language IDL

was adopted.

– a query part Object Query Language (OQL), which is related to the

concept of the query part of the SQL92 standard.

– interface k OO PL C++, Smalltalk (to Java: replaced by Java Data

Objects (JDO))

2001: the ODMG disbanded (version ODMG 3.0)

OOPL + DBMS = OODBMS

Query languages 1 6

Basic concepts of ODMG-93

 class (or type), instance (or object), attribute,

method and integrity constraint

– class - template for instances (objects), which can

share attributes and methods.

 attribute domain: primitive data type, abstract data type

(ADT), or reference to a class.

 method is a function (its implementation is hidden)

applicable to class instances (calculation is based on the

values of attributes).

 object identifier (OID)

– each object has a unique identifier, through which

a corresponding object can be obtained from DB.

Query languages 1 7

Basic concepts of ODMG-93

 encapsulation
– data is “captured” with methods. An encapsulation unit is an

object. Methods hold only on objects, with which they are

encapsulated.

 class hierarchy, inheritance
– subclass  hierarchy

– inheritance is a process that means for a subclass to use all

attributes and methods from its superclass.

– multiple-inheritance ( problems, e.g., conflict resolution

the same names inherited attributes and methods).

Query languages 1 8

Emergence of OO DB technology

Sources: OO programming, OO analysis and design,
relational DBMS

 object-relational mapping (ORM)

Ex.: Hibernate (interface: Session, Transaction,
Query)

TopLink (ORM application owned by Oracle, Inc.)

Access to objects: e.g. Hibernate Query Language
 SQL; programming language + methods for entering
the SQL database

Problem: less semantics in relations, impedance
mismatch in an access to objects.

Query languages 1 9

Running without ORM

through API

JDBC

Query languages 1 10

Running with ORM 15%-20%

slower than

with JDBC

Query languages 1 11

Example: Hibernate

Query languages 1 12

Emergence of new technologies

 2nd half of the 1980s -- OO databases
– O2 (→ Unidata → Informix → IBM)

– ObjectStore (Ignite Technologies from 2015)

– Versant Object Database (version 9.2 in 2016),

– Objectivity/DB, InterSystems Caché (version
2016.1.1),

– GemStone (GemTalk Systems from 2013),

– Jasmine

– newer: db4o (database for objects),

 Principle: top-down (from application to data)

 Querying: OQL – not complete, others: e.g.,
Objectivity/SQL++

Query languages 1 13

Query languages 1 14

OR DB Technologies

Reasons:

 partial failure: OO technologies did not offer the

flexibility and performance of relational DBMS

 even later descent - e.g. db4o ceased to be

supported in 2014

 DBMS manufacturers target:

– get the most out of large investments in relational technology

(data, experience gained)

– take advantage of the flexibility, productivity and running

benefits of OO modeling,

– integrate database services into production systems and

other applications.

Query languages 1 15

OR DB Technologies

 90ies - OR databases (OR DBMS)

– combination of OO and relational DBMS

– 1992: UniSQL/X, then: HP - OpenODB (later

Odapter)

– 1993: Montage Systems (later Illustra) –

– the commercial version of Postgres

– 2000+: DB/2, INFORMIX, ORACLE, Sybase

Anywhere (integrated to SAP, 2012), Unidata,

Microsoft SQL Sever

Query languages 1 16

OR DB Technologies

Two approaches:

universal memory, all kinds of data is

managed in DBMS; integration (in many
different ways!)

 universal servers
 universal approach, all data is in their original

(autonomous) systems

Technique: middleware
 gateways (at least two independent servers)

 schemes mapping, query transformations

 object envelops: Persistence Software, Ontologic, HP,
Next, ... (problems: efficiency)

 DB based on Web

Query languages 1 17

Extensibility, user defined

types and functions

Requirement: manipulation of BLOBs (atomic in RDBMS)

Extensibility: possibility to add new data types + programs

(functions) „wrapped“ into and special module

 UDT (user defined types)

UDF (user defined functions)

Problem: integration into relational DBMS (including SQL!)
DB/2: relational extenders

Informix: DataBlades

ORACLE: cartridges

Sybase: Component Integration Layer.

ADT possibilities :

black box

white box

Query languages 1 18

Extensibility, user defined types and

functions

Ex.: DB/2 in r. 2006:
– MapInfo

– NetOwl (business intelligence language)

– EcoWin (time sequences, macroeconomical time
sequences, …)

– GIS and spatial objects

– SQL expander (mathematical, financial, conversion and
other functions)

– VideoCharger (audio and video objects in real-time)

– text, XML, audio, video, pictures

– FormidaFire (heterogeneous data integration)

– …

Ex.: Informix in r. 2006:
– C-ISAM, Excallibur Text Search, Geodetic, Image

Foundations, Spatial, TimeSeries, Video Foundation, Web

Query languages 1 19

Extensibility, user defined types and

functions

 Implementation: technology „plug in“ using

various techniques:
– DataBlades - direct access to the database engine
– ORACLE 7.3 - more servers and API

 Today: direct part of database engines DB/2,
INFORMIX, ORACLE, Sybase Adaptive
Server+Java, OSMOS, Unidata

Query languages 1 20

Extensibility, user defined types and

functions

 partial standardization:
– SQL/MM (e.g., Full-Text - provides ADT + appropriate

functions)

– more generally: SQL99, SQL:2003 enable to build

rather complex data types based on several built-in

basic data types

– extending apparatus of built-in basic types – XML

(2003 …), JSON (2016)

Query languages 1 21

Example - text extender
SELECT journal, date, title

FROM Articles

WHERE CONTAINS(article_text, ‘(“database” AND

(“SQL” | “SQL92”) AND NOT “dBASE”)‘) = 1;

Other functions: NO_OF_MATCHES ((how many times a sample
appears in the text), RANK (ranking of values of the order in the
result based on a measure).

SELECT journal, title

FROM Articles

WHERE NO_OF_MATCHES (article_text, ‘database‘) > 10;

SELECT journal, date, RANK(article_text, ‘(“database” AND

(“SQL” | “SQL92”))’) AS relevance

FROM Article

ORDER BY relevance DESC;

Query languages 1 22

Architecture of known products

 adding a special application interface (API) and

special servers (also ORACLE 7.3 – see ,e.g.,

CONTEXT, Media Server, OLAP),

 simulation OR on the middleware level (also

ORACLE 7.3 – see, e.g., the part Spatial Data

Option),

 total remaking a database machine (e.g., Illustra

Information Technology),

 adding an OO layer to a relational machine (e.g.

INFORMIX Universal Server, IBM D2/6000 Common

Server, Sybase Adaptive Server + Java).

Query languages 1 23

Interaction of DB and the text

extender in DB2

application

DB2 client

DB2 server UDF DB2 server

client

server

DB text index

Query languages 1 24

Architectures of extendibility (1)

CC&R: concurency control and recovery

AM: access method

deep

intervention

into the core

Query languages 1 25

Architectures of extendibility (2)

is only one

GiST: Generalized Search Tree AM on the top of relational DBMS

Query languages 1 26

Problems with ORDBMS

 implementation of VITA data types (video, image, text,
audio)

 integration of data types
– how to optimize queries?

 old solutions:
– modification of the DBMS core (expensive, demanding)

– functionality available only for some types of requirements

 newer solutions:
– specialized servers

Query languages 1 27

„Real“ ORDBMS
Won Kim: „extendibility is only a secondary, although

useful, feature of the OO approach“

Stonebraker: „extendibility of type “plug-in” (e.g., in
ORACLE) is suitable for connectivity application-
application, nevertheless has nothing to do
with database “plug-in”. It is only a middleware, which
does not establish OR technology“.

Requirements:

– data model with the features of ODMG-93

– associated high-level object language

Solution: OO extension of SQL fulfills (approx.) these
requirements

Today: standards SQL:1999, SQL:2003 + further
development

Query languages 1 28

Object-relational modelling

 Extension of the relational model by type

definition, objects and relevant constructs for

their manipulation,

 attributes of tuples are of complex types,

including nested relations,

 relational background is preserved (including

a declarative approach to data processing,

 compatibility with relational languages (they

form a subset).

Query languages 1 29

Example: nested vs. normalized

relation

CW OLAP {Kusý, Klas} {star, dimension} 23 April 1998

SN Database {Novák, Fic} {RDM, schema} 15 May 1998

journal title authors keywords date

day month year

journal title authors keyword day month year

CW OLAP Kusý star 23 April 1998

CW OLAP Kusý dimension 23 April 1998

CW OLAP Klas star 23 April 1998

CW OLAP Klas dimension 23 April 1998

SN Database Novák RDM 15 May 1998

SN Database Novák schema 15 May 1998

SN Database Fic RDM 15 May 1998

SN Database Fic schema 15 May 1998

Query languages 1 30

Normalization into 4NF

journal title

CW OLAP

SN Database

title author

OLAP Kusý

OLAP Klas

Database Novák

Database Fic

title keyword

OLAP star

OLAP dimension

Database schema

Database RDM

title day month year

OLAP 23 April 1998

Database 15 May 1998

Negatives of 4NF

• joins in queries

Negatives of only 1NF

• the loss of relation 1 row = 1 object

Query languages 1 31

Normalization into 4NF

journal title

CW OLAP

SN Database

title author

OLAP Kusý

OLAP Klas

Database Novák

Database Fic

title keyword

OLAP star

OLAP dimension

Database schema

Database RDM

title day month year

OLAP 23 April 1998

Database 15 May 1998

Negatives of 4NF:

• joins in queries

Negatives of simple 1NF:

• the loss of relation 1 row = 1 object

*eventually

Query languages 1 32

SQL:1999

5 parts:

 SQL/Framework 75 pgs.

 SQL/Foundations 1100 pgs.

 SQL/CLI (Call Level Interface) 400 pgs.

 SQL/PSM (Persistent Store Modules)
160 pgs.

 SQL/Bindings 250 pgs.

(SQL Embedded, Dynamic SQL, Direct invocation)

 alternative to SQL calling from application programs (implementations:

ODBC, JDBC)
 procedural language for transactions managements

Query languages 1 33

SQL:1999

 object support

 stored procedures

 triggers

 recursive queries

 extension for OLAP

 procedural constructs

 expressions in ORDER BY

 save points

 updates and inserts using join operations

Query languages 1 34

Objects: from SQL3 to SQL:1999

 The original SQL3 used for object support:
– user defined types (UDT): ADT, named row types

and differentiate types,

– type constructors for row types and references,

– type constructors for collections (sets, list and
multisets),

– user defined functions (UDF) and procedures
(UDP),

– large objects (LOB).

 Standard SQL:1999 - subset of original
concept

Query languages 1 35

Predefined types in SQL:1999

Numeric String Datatime Interval Boolean

Přesné Approx.

Bit

Timestamp
Time

Char BLOB

CLOB

Date

Fixed Varying
Fixed Varying

smallint

integer

decimal

numeric

real

float

double

Omitted in

SQL:2003

Query languages 1 36

Predefined types in SQL:2003

Numeric String Datatime Interval Boolean

Přesné Approx. Timestamp
Time

Char BLOB

CLOB

Date

Fixed Varying

smallint

integer

decimal

numeric

real

float

double

XML

Query languages 1 37

Type Boolean

SELECT dep_n, EVERY(salary  20000) AS all_rich,

SOME(salary  20000) AS some_rich

FROM emp

GROUP BY dep_n;

Result:

dep_n all_rich some_rich

A35 FALSE FALSE

J48 TRUE TRUE

Z52 FALSE TRUE

Query languages 1 38

Other types in SQL:1999

constructed atomic types:
– reference

constructed composite types:
– array /* subtype collection */

ordered list with the maximum cardinality;
arrays of arrays or multidimensional arrays are not
allowed

– row

Note: originally considered more subtype collections (in
implementation as well)

Note: there are new functions to types (BIT_LENGHT,
POSITION, SUBSTRING, …)

Query languages 1 39

Array type

CREATE TABLE messages(
ID INTEGER
authors VARCHAR(15) ARRAY[20]
title VARCHAR(100)
abstract FULLTEXT

– accessing elements of array by subscript numbers, e.g. authors[3],

– function CARDINALITY, comparison =, <>, concatenation , CAST

– UNNEST,

– possibility WITH ORDINALITY (to generate the offset column
corresponding to subscript numbers of the elements in array)

SELECT m.ID, a. name
FROM messages AS m, UNNEST(m.authors) as a(name)

Query languages 1 40

Other types in SQL:1999

UDT:

– distinct types (are formed by a single predefined

type)

– structured types (can be defined with more

attributes, which are of predefined types, type

ARRAY, or of another structured type)

 ADT

– behavior is specified by functions, procedures and

methods

– ADTs can be organized into hierarchies with inheritance

 named row types

Query languages 1 41

Distinct types

Principle: renaming (distinguishing) predefined types + different
behavior

CREATE TYPE ROOM_TYPE
AS CHAR(10) FINAL;

CREATE TYPE METERS
AS INTEGER FINAL;

CREATE TYPE Q_METERS
AS INTEGER FINAL;

CREATE TABLE rooms(
m_id ROOM_TYPE
m_lenght METERS
m_width METERS
m_perimeter METERS
m_area Q_METERS);

Attention: compare with the DOMAIN notion!

Note: weak semantics: addition operator is not defined on METERS
(Q_METERS)

UPDATE rooms
SET m_area = m_lenght

UPDATE rooms
SET m_width = m_lenght

Query languages 1 42

Row type - unnamed

CREATE TABLE persons (
name VARCHAR(20),
address ROW(street CHAR(30),

house_n CHAR(6),
town CHAR(20),
zip_code CHAR(5)),

birthdate DATE);

INSERT INTO persons
VALUES('J. Novák', ('Svojetická’, '2401/2', Praha 10,

10000), 1948-04-23);

SELECT p.address.town
FROM persons p

Query languages 1 43

Row type – named

 Comparing to ADT, it is not encapsulated.

CREATE ROW TYPE account_t (

account_n INT,

client REF(client_t),

type CHAR(1),

opened DATE,

interest DOUBLE PRECISION,

balance DOUBLE PRECISION,

);

CREATE TABLE accounts OF account_t

(PRIMARY KEY account_n);

 statement is not a part of the SQL standard. There is, e.g., in

DB/2.

Query languages 1 44

Row type – named ADT

 data structure (+ methods)

 suitable for entity modelling and their

behavior

Ex.: person, student, departure, …
CREATE TYPE employee_t AS(
empID INTEGER
name VARCHAR(20));

movie role actor

Evita servant (23, Kepka)

… … ...

id empID name

23712 23 Kepka

… … ...

Use

really a class

definition

id reminds

OID in OO

Query languages 1 45

Row type – named ADT

CREATE TABLE employees OF employee_t

(PRIMARY KEY empID);

What is actually the resulting table??

 Unary relation, whose tuples are objects with
two components.

 ICs are functions of tables and not of types

Query languages 1 46

User defined procedures and functions

 programs called in SQL: procedures and functions

– procedures have parameters of type IN, OUT, INOUT

– functions have parameters only of type IN, they return a value

 programs construction:

– head and body in SQL (either 1 SQL statement or BEGIN…END)

– head in SQL, body externally defined

 programs calling:

– procedure: CALL name_of_procedure(p1,p2,…,pn)

– function: functionally as f(x,y)

– stored procedure: CALL statement from a client program, which is
called under direction of a database manager.

In UDT methods will be added.

Query languages 1 47

User defined procedures and functions

Ex.: DB2 UDB/OSF White Box ADT

CREATE TYPE point AS (
x DOUBLE,

y DOUBLE,

);

CREATE FUNCTION distance(p1 point, p2 point) RETURNS INTEGER

LANGUAGE SQL INLINE NOT VARIANT

RETURN sqrt((p2..y-p1..y)*(p2..y-p1..y) + (p2..x-p1..x)*(p2..x-p1..x));

SELECT E.name

FROM emp E, town T

WHERE T.name = ‘Ostrava’

AND distance(E.residence, T.centre) < 25;

Query languages 1 48

(User defined) methods

 SQL:1999 adds methods.

 Differences in methods and functions:

– methods are always tied to a type, functions do not,

– the given data type is always the type of the first (undeclared)

method argument,

– methods are always stored in the same schema, in which the

type, to which they are closed, is stored. Functions are not

restricted to a specific schema.

– functions and methods can be polymorphic, they differ in

mechanism of choosing specific methods in run time,

– signature and body of methods are specified separately,

– methods calls (dot notation + arguments in brackets).

Query languages 1 49

ADT in SQL:1999

CREATE TYPE employee_t AS(

empID INTEGER

name CHAR(20),

address address_t,

manager employee_t,

hire_date DATE,

basic_salary DECIMAL(7,2),

supplement DECIMAL(7,2))

INSTANTIABLE

NOT FINAL

REF empID

METHOD worked_years() RETURNS INTEGER

METHOD salary() RETURNS DECIMAL);

CREATE METHOD
worked_years FOR
employee_t
BEGIN … END;

CREATE METHOD salary
FOR employee_t
BEGIN … END;

Query languages 1 50

ADT in SQL:1999

NOT FINAL … can have another subtype

in SQL:1999 structured types have to be NOT FINAL,
distinct types have to be FINAL (in SQL:2003 released)

REF enables to understand data (rows) in tables of given
type as objects. In the table definition, it is possible to
name this „identification“ attribute.

Query languages 1 51

ADT in SQL:1999

Possibilities of specification:

 system-generated

REF IS SYSTEM GENERATED

or

REF IS PID SYSTEM GENERATED

 user-generated

REF USING predefined type

 derived

REF(list of attributes)

Here: reference with empID

its values are „visible“

Query languages 1 52

Subtypes

CREATE TYPE person_t AS(

name CHAR(20),

address address_t,

NOT FINAL

CREATE TYPE employee_t UNDER person_t(

empID INTEGER

manager employee_t, /employee_t is a

hire_date DATE, subtype of person_t /

basic_salary DECIMAL(7,2),

supplement DECIMAL(7,2))

NOT FINAL

REF empID

METHOD worked_years() RETURNS INTEGER

METHOD salary() RETURNS DECIMAL);

Query languages 1 53

Subtypes

CREATE TYPE clerk_t UNDER employee_t …

CREATE TYPE worker_t UNDER employee_t …
 structured type can be a subtype of another ADT

 ADT inherits the structure (attributes) and behaviour
(methods) of its supertypes
– single inheritance is allowed (multiple one is postponed in SQL

standard, some special cases, e.g., in ORACLE)

– can define additional attributes and methods and can override
inherited methods.

 substitutability: a value of subtype can occur in the place
a given type

Query languages 1 54

Subtables

 apparatus dependent the type apparatus

CREATE TABLE persons OF person_t

CREATE TABLE employees OF employee_t

UNDER persons;

 inherits columns, IOs, triggers, … of the given

supertable

Query languages 1 55

Subtables

 consistence requirements for subtables and
supertables
– each tuples in supertable (e.g. persons) can

correspond mostly to one tuple in subtables (e.g.
employees and external_users)

– tj. each entity has to have the most specified type

 selection limited to the X table using

FROM ONLY (X)

– otherwise also from the subtables of X.

Query languages 1 56

Access to the values of attributes

Each attribute has automatically methods generator and
mutator

 values selection

SELECT e.name()
FROM employees e

 update in 3 steps
SET newEmp = employee_t()
newEmp.empID(‘7897890’)

newEmp.name(‘John’)

INSERT INTO employees(newEmp)

generates a new

instance

application of the generator

method

Query languages 1 57

Reference and dereference

CREATE TYPE account_t AS (
account_n INT,
client REF(client_t),
type CHAR(1),
opened DATE,
interest DOUBLE PRECISION,
balance DOUBLE PRECISION,
)

FINAL REF IS SYSTEM GENERATED;

CREATE TABLE accounts OF account_t
(PRIMARY KEY account_n);

accounts table has a special
attribute similar to oid so called
self-referencing column

Query languages 1 58

Reference and dereference

What happens when referenced object is removed:
 nothing – implicitly REFERENCES ARE NOT CHECKED

 possibility of an action, if REFERENCES ARE CHECKED ON
DELETE (then SET DEFAULT, SET NULL, CASCADE, NO ACTION,
RESTRICT)

Dereference
 possible only when location of objects of REF type is defined (one table in

SQL:1999)

CREATE TABLE clients OF client_t;

CREATE TABLE accounts OF account_t
(PRIMARY KEY account_n,
client WITH OPTIONS SCOPE clients

);

Note: reminds a referential integrity

SELECT a.client -> name
FROM accounts a
WHERE a.client->address.town = "Suchdol“ AND a.balance > 100000;

Query languages 1 59

Reference and dereference

 dereference by a path and/or by function

DEREF

compare

SELECT a.opened, a.client

FROM accounts a;

and

SELECT a.opened, DEREF(a.client)

FROM accounts a;

Query languages 1 60

Reference and dereference

 benefits of using REF:

– sharing objects

unnecessarily duplicated data

 the change is done in one place

 link to a method:

SELECT a.client() -> name

FROM accounts a

WHERE a.client() -> salary()  10000;

Note: methods without parameters do not require ()

Query languages 1 61

Beyond SQL:1999, 2003

CREATE TABLE employees

(id INTEGER PRIMARY KEY,

name VARCHAR(30),

address ROW(street CHAR(30),

house_n CHAR(6),

town CHAR(20),

zip_code CHAR(5)),

projects INTEGER SET,

children person,

benefits MONEY MULTISET

is in SQL:2003

Query languages 1 62

Multisets

nt1 MULTISET EXCEPT [DISTINCT] nt2 nt1 - nt2

nt1 MULTISET INTERSECT [DISTINCT] nt2 nt1  nt2

nt1 MULTISET UNION [DISTINCT] nt2 nt1  nt2

CARDINALITY(nt) nt 

nt IS [NOT] EMPTY

nt IS [NOT] A SET

SET(nt) remove duplicates z nt

nt1 = nt2 equality of multisets

nt1 IN (nt2, nt3, ...) to be in a list of multisets

nt1 [NOT] SUBMULTISET OF nt2 comparison of multisets

r [NOT] MEMBER OF nt r  nt?

CAST(COLLECT(col)) nested table based on col

POWERMULTISET(nt) set of all non-empty subsets nt

POWERMULTISET_BY_CARDINALITY(nt,c) set of all non-empty
subsets nt with cardinality c

Note:

 from SQL:2003: MULTISET without constraint cardinality

 ARRAY without specification of maximal cardinality – it is given by
implementation

Query languages 1 63

O-R in commercial products

 INFORMIX: collection - set, multiset, list (without

constraint length)

 Oracle from 8i version (since 1999):

– instead of ADT -- object types

– notation: CREATE TYPE … AS OBJECT(…);

– collections

 VARRAY (equivalent to ARRAY from SQL:1999), but it is not

allowed DELETE element from an array

 for a given array NESTED TABLE (unordered, unrestricted

collection of elements)

Note: multilevel nesting, e.g., in Oracle 11g

CREATE TYPE WhereEverywhere AS VARRAY(4) OF Address

Query languages 1 64

O-R in commercial products

– Id visibility

SELECT REF(p) INTO reftoperson

FROM persons AS p

WHERE p.name = ‘Novák, J.’

Query languages 1 65

O-R in commercial products

CREATE TYPE Cars AS TABLE OF Car_t

CREATE TABLE COMPANIES (

fleet Cars

…)

NESTED TABLE fleet STORE AS cars;

Note: You can specify where "subtables" Cars are to be

stored.

SELECT *

FROM COMPANIES AS c, c.fleet AS f

WHERE ‘Buick’ IN (SELECT f.car_brand FROM f);

Follow the

position of ;

Query languages 1 66

O-R in commercial products

Queries a nested table:

 using THE

 can be treated similarly as with other relations

SELECT f.licence_plate
FROM THE (

SELECT fleet FROM COMPANIES
WHERE c_name= ‘Komix’)

) f
WHERE f.car_brand=‘Buick’;

Q.: Find license plates of all Buicks owned by the Komix
company.

Query languages 1 67

O-R in commercial products

Methods in ORACLE

– specification in CREATE TYPE with MEMBER

FUNCTION, MEMBER PROCEDURE

– body in the statement CREATE TYPE BODY

Access:

SELECT a.client.name

FROM accounts a

WHERE a.client.salary  10000;

Query languages 1 68

Problems with OO in SQL

 tables are the only named entities

 REF type is applicable only on objects given
by a row

 UDT is the first step to OO

– to enable persistency, the object has to be
in a table,

– it is not possible to assign a name to
individual instance,

– it is not possible to query for all instances
of an ADT

Query languages 1 69

OR DB design : Transformation E-R → OR

 1. phase: types

– entity types  structured types

– composite attributes  named row types,

unnamed row types in structured type, also a

structured type is possible

– multivalued attributes  array of typed values

(estimation of max is somewhere important)

– derived attributes  add a method into the

structured type definition

removed in SQL:2003 with

SET as well as ARRAY

Query languages 1 70

– relationship types – both single- or bidirectional

N:1  with REF + array of typed values (if

bidirectional)

M:N  with one or two arays containing typed

values (if single or bidirectional).

– ISA hierarchies  hierarchies of types

 2. phase: typed tables

OR DB design : Transformation E-R → OR

Query languages 1 71

Conclusions

 Actual implementations of ORDBMS:

– complaints:

OODBMS - not database enough

ORDBMS - not object-oriented enough

lack of development tools, new methodologies

the biggest problem, but also the biggest

advantage: universality

 Development goes on: XML DB, NoSQL DB, Web,

cloud, NewSQL, …, more generally: non-relational,

distributed, open-source and horizontally scalable

Query languages 1 72

object-relational

object-oriented

less

relational

file systems

data complexity

extendibility

more

search capability,

multiuser services support

The world of DB technologies at the end of the 1st millennium

Query languages 1 73

Conclusions

research relational OO,OR XML NoSQL NewSQL

commerce hierarchical, relational OO,OR XML NoSQL

network

inherited hierarchical, relational OO,OR XML

network

technologies 70s 80s 90s 2000-10 2010+

Lessons learned from history

?

