An Analysis of Approaches to XML Schema Inference*

Irena Mlynkova
Department of Software Engineering, Charles University in Prague, Czech Republic
irena.mlynkova@mff.cuni.cz

Abstract

In this paper we focus on the problem of automatic
inferring an XML schema for a given sample set of
XML documents. We provide an overview and anal-
ysis of existing approaches and compare their key ad-
vantages. We conclude the text with a discussion of
open issues and problems to be solved as well as their
possible solutions.

1 Introduction

Without any doubt the XML [8] is currently a de-
facto standard for data representation. Its popularity
is given by the fact that it is well-defined, easy-to-use
and, at the same time, enough powerful. To enable
users to specify own allowed structure of XML docu-
ments, so-called XML schema, the W3C has proposed
two languages — DTD [8] and XML Schema [7,33]. The
former one is directly a part of XML specification and
due to its simplicity it is one of the most popular for-
mats for schema specification. The latter language was
proposed later, in reaction to the lack of constructs of
DTD. The key emphasis is put on simple types, object-
oriented features (such as user-defined data types, in-
heritance, substitutability etc.) and reusability of parts
of a schema or whole schemas.

On the other hand, statistical analyses of real-world
XML data show that a significant portion of XML doc-
uments (52% [21] of randomly crawled or 7.4% [24] of
semi-automatically collected) still have no schema at
all. What is more, XML Schema definitions (XSDs) are
used even less (only for 0.09% [21] of randomly crawled
or 38% [24] of semi-automatically collected XML doc-
uments) and even if they are used, they often (in 85%
of cases [4]) define so-called local tree grammars [27],
i.e. languages that can be defined using DTD as well.

*This work was supported in part by the National Programme
of Research (Information Society Project 1IET100300419).

Consequently a new research area of automatic con-
struction of an XML schema has opened. The key aim
is to create an XML schema for the given sample set
of XML documents that is neither too general, nor too
restrictive. It means that the set of document instances
of the inferred schema is not too broad in comparison
with the sample data but, also, it is not equivalent to
them. Currently, there are several proposals of respec-
tive algorithms, but there is still a space for further
improvements. In this paper we provide an analysis
and overview of existing approaches and compare their
advantages and disadvantages. In particular, we deal
with the problems that have already been solved and
solutions used. We conclude with a discussion of re-
maining open issues as well as their possible solutions.

The paper is structured as follows: Section 2 in-
troduces the relation of XML schemata to theory of
languages and automata. In Section 3 we discuss the
existing algorithms for schema inference and sum up
the key findings. Section 4 discusses the related open
issues and Section 5 provides conclusions.

2 XML Schemata and Grammars

The most popular language for description of the
allowed structure of XML documents is currently the
Document Type Definition (DTD) [8]. For simple ap-
plications it is sufficient, but for more complex ones
the W3C proposed a more powerful tool — the XML
Schema language [7,33].

An XML schema describing the allowed structure of
XML documents is a context-free grammar [3], i.e. a
grammar where nonterminals can be rewritten without
regard to the context in which they occur.

Definition 1 A context-free grammar is quadruple
G = (N,T,P,S), where N and T are finite sets of
nonterminals and terminals, P is a finite set of pro-
ductions and S is a non terminal called a start symbol.
Each production is of the form A — «, where A € N
and « is a regular expression over alphabet (N UT)*.

The language generated by grammar G is denoted

L(G).

Definition 2 Given the alphabet 3, a regular expres-
sion (RE) over ¥ is inductively defined as follows:

e () (empty set) and e (empty string) are REs.
e VacX¥ :aisaRE

o If r and s are REs of X, then (rs) (concatena-
tion), (r|s) (alternation) and (r*) Kleene closure)
are REs.

Note that the DTD language adds two abbrevi-
ations: (sle) = (s?) and (ss*) = (s*). Also the
concatenation is expressed via the ‘,’ operator. The
XML Schema language adds (among other exten-
sions) another one, so-called unordered sequence of REs
81,82, ..+, Sk, 1.6. an alternation of all possible ordered
sequences of s1, Sa, ..., Sk.

A language specified by a grammar can be accepted
by an automaton, in our case a finite state automaton.

Definition 3 A finite state automaton (FSA) is quin-
tuple A = (Q,%,4,S, F), where Q is a set of states, ¥
is a set of input symbols (alphabet), § : Q x ¥* — Q
is the transition function, S € Q is the start state and
F C Q is the set of final states.

The language recognized by an automaton A is de-
noted L(A).

Note that for each RE we can construct a FSA and
vice versa.

3 Analysis of Existing Approaches

The studied problem can be described as fol-
lows: Being given a set of XML documents A =
{D1,Da,...,D,} (i.e. words over an alphabet T'), we
search for an XML schema Sa (i.e. a grammar Ga) s.t.
Vi € [1,n] : D; is valid against Sa (i.e. A C L(Ga)).
In particular, we are searching for Sa that is enough
concise, precise and, at the same time, general.

From the point of view of the result, we can dis-
tinguish methods which output DTDs or XSDs. The
problem is that some of the methods claim to pro-
duce XSDs, but their expressive power is not be-
yond the expressive power of DTD. Since most of the
DTD constructs are intended for specification of con-
tent models of elements, the existing approaches fo-
cus mainly on them. Consequently, they often ignore
attributes, mixed content or special data types, such
as ID, IDREF(S). In case of XSD constructs the ex-
isting methods focus on simple data types, elements

having various contexts and “syntactic sugar” such as
unordered sequences.

On the other hand, the types of the inference process
can be divided into heuristic and grammar-inferring.
In the former case the result does not belong to any
class of grammar and, hence, we cannot say anything
about its features. In the latter case the algorithms
output particular class of languages with specific char-
acteristics. Although grammars accepting XML doc-
uments are context-free, the problem can be reduced
to inferring a set of REs, each for a single element.
But, since according to Gold’s theorem [15] regular lan-
guages are not identifiable only from positive examples
(i.e. sample XML documents which should conform
to the resulting schema), the existing methods need to
exploit either heuristics or restriction to an identifiable
subclass of regular languages.

Most of the existing approaches use the following
strategy: For each occurrence of element e € A and
its subelements eq, es, ..., € we construct a production
e — ey e ... e;. The left hand side is called element
type, the right hand side is called a content model of
the element type. The productions form so-called ini-
tial grammar (IG). For each element type the produc-
tions are then merged, simplified and generalized using
various methods and criteria. A common approach is
so-called merging state algorithm, where a prefix tree
automaton (PTA) is built from the productions of the
same element type and the automaton is generalized
via merging of its states. Finally, the generalized au-
tomaton/grammar is expressed in syntax of the respec-
tive XML schema language.

An example of IG and PTA is depicted in Figure 1.

person — name email email
<person id="123"> person — name email
<name>
<first>Irena</first>
<surname>Mlynkova</surname>
</name>
<email>irena.mlynkova@gmail.com</email> | (first — PCDATA
<email>irena.mlynkova@mff.cuni.cz</email> | [surname — PCDATA
</person> email — PCDATA
<person id="456" holiday="yes">
<name>
<surname>Necasky</surname>
<first>Martin</first> 0 e 9
</name>
<email>martin.necasky@mff.cuni.cz</email> o e
</person> email

name — first surname
name — surname first

name email

email

Figure 1. 1G and PTA for element person

3.1 Heuristic Approaches

Heuristic approaches are based on experience with
manual construction of schemas. Their results do not
belong to any special class of grammars and they are

based on generalization of IG using a set of predefined
heuristic rules, such as, e.g., “if there are more than
three occurrences of an element, it is probable that
it can occur arbitrary times”. These techniques can
be further divided into methods which generalize 1G
until a satisfactory solution is reached (e.g. [25,30])
and methods which generate a number of candidates
and then choose the optimal one (e.g. [14]). While in
the first case the methods are threatened by a wrong
step leading to a suboptimal schema, in the latter case
they have to cope with space overhead and specifying
a reasonable function for quality evaluation.

GB-engine Probably the first true XML approach
to automatic DTD inference is system called grammar
builder engine (GB-engine) [30]. In this particular case
it outputs SGML DTDs — a predecessor of XML DTDs.
The approach is relative simple and straightforward.
Firstly, the IG is created. Then the productions with
the same element type are combined using the alterna-
tion into a common production:

A ->B
A ->C = A->B | C|DE
A->DE

In the next step, using a set of heuristic rules the
content models of the productions are simplified and
generalized until any of the rules can be applied. Apart
from simple rules that solve trivial cases, the set in-
volves rules dealing with repetitions, identical bases,
redundancy etc.:

A ->BBBB => A -> B+
A-> (B Cx*x | B? C? =>A -> (B? C?)*
A->BC | BCx => A -> B Cx

Finally, the productions are rewritten into DTD syn-
tax. Note that apart from the content models, the sys-
tem supports attributes, #PCDATA and mixed content.

DTD-miner DTD-miner [25] is one of the first ap-
proaches inferring an XML DTD. It is very similar to
the previous case, the key difference is in the represen-
tation of the input XML documents and in the heuris-
tic rules. Firstly, the so-called spanning graph, i.e. an
equivalent of the well-known data guide [16], is built
for the input XML documents. Each node of the graph
represents a unique element e € A and bears informa-
tion on all its attributes and textual data. The edges of
the graph represent element-subelement relationships
occurring in A and their occurrence.

The set of rules involves optionality, repetition and
grouping. Optionality identifies elements that do not

occur in all the input documents. Repetition identi-
fies adjacent elements that occur multiple times. And
grouping rule identifies repeating groups of adjacent el-
ements. Finally, the generated DTD is refined to gain
less complex structures using further rules such as:

A?, B?, C? => A | B | C
A, B, C,D, A, D,B,C=>C(A|BI|C|l D+

Note that while in the previous case the alternation
was the first to be involved in the result, in this case it
is the last one.

XTRACT The XTRACT [14] system is a classical
representative of a merging state algorithm. It differs
in two aspects: The approach produces a set of possible
solutions and selects the optimal one, i.e. it is able to
evaluate quality of a schema generalization. The possi-
ble solutions are created using heuristic generalization
rules for optionality, repetition and grouping similar to
those proposed in DTD-miner.

For the purpose of schema evaluation the authors
exploit so-called minimum description length (MDL)
principle. It expresses the quality of a DTD candidate
using two aspects — conciseness and preciseness. Con-
ciseness of a DTD is expressed using the number of bits
required to describe the DTD (the smaller, the better).
Preciseness of a DTD is expressed using the number of
bits required for description of the input data using the
DTD. In other words, the more accurately the struc-
ture is described, the fewer bits are required. Since
the two conditions are contradictory, their balancing
brings reasonable and realistic results.

sk-ANT The sk-ANT [35] method extends the pre-
vious approach in two aspects. Firstly, the search-
ing for the optimal solution is performed using the
Ant Colony Optimization (ACO) heuristics and a new
merging method called sk-strings is introduced.

The ACO heuristics is a kind of general heuristics
that enables one to find a suboptimal solution. A set
of artificial “ants” B = {a1, az, ..., a;} search a space S
of possible solutions (i.e. DTD generalizations) trying
to find the optimal solution. The quality of a solution
is evaluated using the MDL principle. In i-th itera-
tion each a € B searches a subspace of S for a local
suboptimum until it “dies” after performing a prede-
fined amount of steps. A step of an ant represents an
application of any of the merging criterions on the cur-
rent DTD. While searching, an ant a spreads a certain
amount of “pheromone”, i.e. a positive feedback which
denotes how good solution it has found so far. This
information is exploited by ants from the following it-
erations to choose better search steps.

On the other hand, the sk-strings merging rule
is based on a relaxed variant of Nerode equivalence.
Nerode equivalence assumes that two states p and gq
are equivalent if sets of all paths leading from p and
g to terminal state(s) in F' are equivalent. But as
such condition is hardly checked, we can restrain to
k-strings, i.e. only paths of length of k or paths termi-
nating in a terminal state. The respective equivalence
of states then depends on equivalence of sets of outgo-
ing k-strings. In addition, for easier processing we can
consider only s most probable paths, i.e. we can ignore
singular special cases.

While the ACO heuristics enables one to avoid con-
structing multiple solutions concurrently, the sk-string
provides a better merging criterion.

ECFG The so far described approaches focus on in-
ferring DTDs, in particular respective content mod-
els. But, since the XML Schema language offers wider
range of constructs, there also appear heuristic ap-
proaches dealing with pure XSD structures. Probably
the first representative is proposed in paper [9].

The approach focuses on inference of content mod-
els consisting of complex types, sequences and choices,
simple data types and exact occurrence ranges. Us-
ing an XSD formalism — so-called extended context-
free grammars (ECFG) — the authors extend a classi-
cal merging state algorithm with preserving the exact
ranges of occurrences and adding a step which infers
simple data types. For this purpose each set of values
of an element/attribute is analyzed to identify the min-
imal data type which contains all of them. Neverthe-
less, the authors focus only on numeric data types (such
as decimal, float, long, negativelnteger), date,
binary and string.

SchemaMiner The SchemaMiner system proposed
in [34] is another representative of an inference ap-
proach that deals with true XSD constructs. It fo-
cusses on inferring elements with the same name but
different structure and unordered sequences. For this
purpose the authors exploit ideas from the previously
described works, such as ACO heuristics, sk-strings,
(k, h)-context [2] or MDL principle in combination with
exploitation of tree and graph similarity and clustering.

The elements with the same name but different con-
tent are supported only in XSDs and their inference
requires exploitation of more sophisticated approaches
than combining productions with the same element
type. On the other hand, although the unordered
sequences are a classical example of XSD “syntactic
sugar”, their exploitation enables to define simple and,
hence, realistic and usable schemas.

3.2 Inference of a Grammar

Methods inferring a grammar exploit the theory of
languages and grammars and thus ensure a certain de-
gree of quality of the result. They are based on the
idea that we can view an XML schema as a gram-
mar and an XML document valid against the schema
as a word generated by the grammar. As we have
mentioned, since the class of the regular languages is
not identifiable from positive examples, the grammar-
inferring methods focus on its identifiable subclasses.
All the approaches are classical merging state algo-
rithms, whereas the merging criteria are mostly di-
rectly defined by the characteristics of the output class
of the language.

(k, h)-contextual languages Paper [2] is probably
the first approach dealing with inference of a particular
class of XML languages. The approach is based on
the observation that if a sufficiently long sequence of
terminals occurs in two places in the examples, the
components that follow are independent on the position
of the sequence within the document.

Definition 4 A regular language L is k-contextual,
if there exists a finite automaton A s.t. L = L(A)
and for any two states pg, qr of A and all input sym-
bols aias...ar: if there are two states pg, qo of A s.t.
d(po, aras...ax) = pr and 6(qo,a1as...ax) = qi, then
Pr = Qk-

Definition 5 A regular language L is (k,h)-
contextual, if there ewists a finite automaton A
s.t. L = L(A) and for any two states pg, qr of A
and all input symbols aias...a: if there are two states
po, qo of A s.t. d(po,a1) = p1, d(p1,a2) = p2, ..,
§(pk—1,ar) = pr. and §(qo,a1) = q1, d(q1,a2) = o,
ey 0(Qk—1,0) = qi, then p; = q; for every i s.t.
0<h<i<k.

The k-contextual and (k,h)-contextual languages
form two identifiable subclasses of regular languages
which assume that the context of elements is limited.
The algorithm is a classical merging state approach
starting with a prefix tree automaton, but the merg-
ing is not made on the basis of heuristics, but on the
basis of the respective features of the languages. The
merging criterion is based on an assumption that two
states pp and ¢ of the automaton are identical (i.e.
can be merged) if there exist identical paths of length
k terminating in py and gg. In case of (k,h)-context,
also h preceding states in these paths are then identi-
cal. The resulting grammar is finally refined to acquire
more realistic and concise result.

f-distinguishable languages A different class of
identifiable regular languages is inferred in [13]. These
are so-called f-distinguishable languages.

Definition 6 Let T be a set of terminals and F some
finite set. A mapping f : T* — F is called a dis-
tinguishing function, if f(w) = f(z) implies f(wu) =
f(zu) for all u,w,z € T*.

Language L € T is called f-distinguishable if, for
all u,v,w, z € T* with f(w) = f(2), we have zu € L <
zv € L whenever {wu,wv} € L.

Being given a set of positive examples A and the dis-
tinguishing function f, the authors propose a merging
state algorithm that constructs an automaton A ac-
cepting that smallest f-distinguishable language that
contains A.

l-unambiguity An important aspect of XML
schemas is so-called 1-unambiguity. According to the
W3C specification, all content models in an XML
schema must be l-unambiguous (deterministic), i.e.
they can be matched without looking ahead. A sim-
ple example of an ambiguous (non-deterministic) con-
tent model is (e, ez)|(e1,e3), where while reading e;
we are not able to decide which of the alternatives to
choose unless we read the following element. Though
this topic is for some research groups controversial and
there exist several studies dealing with (un)necessity of
this constraint [19], this condition still remains valid.
On the other hand, we can find XML parsers and val-
idators that are able to process also ambiguous content
models.

Probably for the first time this problem has been
faced in paper [22]. For the purpose of preserving
the l-unambiguity, the authors restrict to so-called
single-occurrence property of all derived content mod-
els which ensures the 1-unambiguity.

Definition 7 A single-occurrence regular expression
(SORE) is a regular expression o over X s.t. each
s € X occurs at most once in «.

The authors propose a set of heuristic transforma-
tion rules that modify and generalize the IG so that the
single-occurrence property is fulfilled in the result. An
extension of the proposed approach for XSDs involv-
ing simple data types and attributes (which are not
supported in the original method) has recently been
implemented in system XStruct [17].

SOREs and CHAREs The strategy of paper [5] —
to define an identifiable class of regular languages and

respective inference algorithm — is similar to the previ-
ous ones, but the motivation is slightly different. The
authors result from their analysis of real-world XML
data and XML schemas and define the classes so that
they cover most of the real-world examples. Hence,
contrary to the previous works based purely on results
of theory of languages, the usability of this approach is
undeniable.

The authors focus on two classes of identifiable REs
to be inferred — the previously defined SOREs and new,
so-called chain regular expressions (CHAREs).

Definition 8 A chain regular expression (CHARE)
over % is a SORE over ¥ that consists of a sequence
of factors fi fa...fn, where every factor is an expression
of the form (a1|as|...|ax), (a1las]...]ar)?, (ai|az|...|ag)™
or (ailas|...lag)*, where k > 1 and every a; € X.

The motivation for focusing on CHARESs results
from authors’ experience with inferring DTDs for real-
world XML data. They discover that for small data
sets the SOREs are too rich and inference of CHAREs
provides more realistic and concise results. Similarly to
the previous cases, both the algorithms are based on
merging states of a prefix tree automaton using rules
that ensure that the result belongs to the required class.

k-local single-occurrence grammars Following
their previous work [5], the authors have recently fo-
cussed on features and properties of real-world XSDs
[6]. Using a similar strategy, they first discover a sub-
class of XSDs that is most common in real-world XML
data (occurs in 98% cases) and, at the same time, that
can be identified only from positive examples — so called
k-local, single-occurrence XSDs.

Definition 9 An XSD is k-local, if its content models
depend only on labels up to the k-th ancestor.

The authors then propose a theoretically complete
merging state algorithm called ¢XSD that enables one
to infer k-local, single-occurrence XSDs.

4 Open Issues

The key characteristics of the described approaches
are summed up in Tables 1 and 2. Although each of the
existing approaches brings certain interesting ideas and
optimizations, there is still a space of possible future
improvements.

Table 1. Key characteristics of heuristic methods

| Name | Schema | Key Advantages

GB-engine [30] SGML DTD

First simple heuristic rules.

DTD-miner [25] | DTD

Spanning graph, heuristic rules for optionality, repetition and grouping.

XTRACT [14] DTD Set of candidate solutions, MDL principle.
sk-ANT [35] DTD sk-string merging (based on Nerode equivalence), ACO heuristics.
ECFG [9] XSD Precise occurrence ranges, simple data types.

SchemaMiner [34] | XSD

Unordered sequences, elements with the same name, but different structure.

Table 2. Key characteristics of grammar-inferring methods

| Name [Schema [Key Advantages
(2] DTD k-contextual and (k, h)-contextual languages.
13 DTD f-distinguishable languages.
22 DTD 1-unambiguity.
(5] DTD Single-occurrence and chain REs, based on knowledge of real-wold data.
[6] XSD k-local single-occurrence XSDs, based on knowledge of real-wold data.

User Interaction In all the existing papers the ap-
proaches focus on automatic inference of an XML
schema. The problem is that the resulting schema may
be highly unnatural. Although e.g. the MDL principle
evaluates the quality of the schema using a realistic as-
sumption that it should tightly represent the data and,
at the same time, be concise and compact, users’ pref-
erences can be quite different. (Note that this is not
the same motivation as in case of papers [5, 6] that fo-
cus on real-world DTDs and XSDs.) Hence, a natural
improvement may be exploitation of user interaction.

For instance, the user may influence the process
of merging by proposing preferred merging opera-
tions/target constructs, clustering similar elements etc.
Such approach will not only enable to find more concise
result, but to find it more efficiently as well. Some of
the existing papers (e.g. [2]) mention the aspect of user
interaction, typically in the final step of refinement of
the result, but there seems to be no detailed study and,
in particular, respective implementation.

Other Input Information In all the existing works
the XML schema is inferred on the basis of a set of
positive examples, i.e. XML documents that should
conform to the inferred schema. The Gold’s theorem
highly restricts the existing solutions and, hence, the
authors focus on heuristics or limit the methods to
identifiable classes of languages. But another natural
solution to the problem is to exploit additional infor-
mation, such as XML schema or XML queries.

In the former case we can find the motivation in typ-
ical situation [24] when a user creates an XML schema
of XML documents but then updates only the data,
whereas the schema is considered as a kind of doc-

umentation. Consequently, the schema does not de-
scribe the current structure of the data anymore, how-
ever it can be used as a source of information because
certain matching can be still found. Note that an op-
posite problem is being currently solved in the area of
schema evolution (e.g. [20]).

In case of exploitation of XML queries the motiva-
tion is similar. In general, the queries restrict only
parts of the data structure (those that should appear
at output), however even this partial information can
be exploited for schema inference. Similarly to the pre-
vious case, a related problem is being solved in the area
of XML views (e.g. [29]).

In addition, there seems to be no approach that
would exploit negative examples (i.e. XML documents
that should not conform to the schema).

XML Schema Simple Data Types One of the
biggest advantages of the XML Schema language in
comparison to DTD is its wide support of simple data
types [7]. It involves 44 built-in data types, as well
as user-defined data types derived from existing simple
types using simpleType construct. Hence, a natural
improvement of the existing approaches is a precise in-
ference of simple data types. Most of the existing ap-
proaches omit the simple data types and consider all
the values as strings; the only two exceptions [9, 17]
focus only on selected built-in data types.

Note that the necessity to infer simple data types is
naturally closely related to the purpose the schema is
inferred for. Assuming that the resulting XML schema
is used within a kind of XML data editor, the inferring
module should propose also simple data types. On the
other hand, if the inferred XML schema is used as a

solution for approaches based on existence of an XML
schema, e.g. schema-driven XML-to-relational map-
ping methods (e.g. [31]), the simple data types are of
marginal importance and, thus, can be omitted.

XML Schema Advanced Constructs The second
big advantage of the XML Schema language are vari-
ous complex constructs. The language exploits object-
oriented features, such as user-defined data types, in-
heritance, polymorphism, i.e. substitutability of both
data types and elements, etc. Although most of these
constructs do not extend the expressive power of XML
Schema in comparison to DTD (i.e. they are a kind
of “syntactic sugar”) [23], they enable one to specify
more user-friendly and, hence, realistic schemas. Nat-
urally, their usage is closely related to the previously
described problem of user-interaction, since only the
user can specify which of the constructs are preferred.

Integrity Constraints Both DTD and XML
Schema enable one to specify not only the structure,
but also various semantic constraints. Both involve ID
and IDREF (S) data types that specify unique identifiers
and references to them. The XML Schema language ex-
tends this feature using unique, key and keyref con-
structs that have the same purpose but enable one to
specify the unique/key values more precisely. In addi-
tion, the assert and report constructs enable one to
express specific constraints on values using the XPath
language [10]. Unfortunately, none of the existing ap-
proaches focusses on any of these constraints. In addi-
tion, there are also more general integrity constraints
[28] that could be inferred, though they cannot be ex-
pressed in the existing schema specification languages
so far. In general, their inference would extend the
optimization of approaches that analyze and exploit
information on XML data from XML schemas.

Currently there exist several works which focus on
constraint inference [12, 32], but they focus on re-
stricted cases of integrity constraints in special situa-
tions. There seems to exist no method that would com-
bine schema inference with a more general approach to
inference of related integrity constraints.

Other Schema Definition Languages The DTD
and XML Schema are naturally not the only languages
for definition of structure of XML data, though they
are undoubtedly the most popular ones. There are
also other relatively popular schema specification lan-
guages. The most popular ones are RELAX NG [26]
and Schematron [18] which both have already become
ISO standards.

The Relax NG has similar strategy as both XML
Schema and DTD, i.e. it describes the structure of
XML documents using content models. Contrary to
XML Schema it has much simple syntax, whereas con-
trary to DTD is supports a richer set of simple data
types. On the other hand, the Schematron uses com-
pletely different strategy. It does not specify a gram-
mar the XML documents should conform to, but a
set of conditions, i.e. integrity constraints, the doc-
uments must follow. The conditions are expressed us-
ing XPath. Hence, while the inference of Relax NG
schema can be based on inference of a DTD/XSD with-
out radical modifications, the approach to inference of
Schematron constraints will probably require a brand
new method. On the other hand, it can be a natural
first step towards inference of general integrity con-
straints as described before.

Data Streams A special type of XML data that
have only recently become popular and, hence, the ne-
cessity for proposing respective processing approaches
is crucial are so-called XML data streams. In this par-
ticular application the input data are so huge that they
cannot be kept in a memory concurrently, they can-
not be read more than once or their processing cannot
“wait” for the last portion of the data. Hence the sit-
uation is much more complicated. All the XML tech-
nologies are currently being accommodated to stream
processing and, hence, there occur also requirements
for efficient XML schema inference for XML streams
[11].

5 Conclusion

The XML schema of XML documents is currently
exploited mainly for two purposes — data-exchange and
optimization. In the former case we usually need the in-
ferred schema as a candidate schema further improved
by a user using an appropriate editor. In the latter case
the approaches exploit the knowledge of the schema
for optimization purposes such as finding the optimal
storage [31] or compression [1] strategy. In general,
almost any approach that deals with XML data can
benefit from the knowledge of their structure, i.e. XML
schema. The only question is to what extent.

Our aim was to provide an analytical study of ex-
isting approaches to XML schema inference, as well
as a discussion of remaining open issues. We showed
that the basic aspects of the problem (such as infer-
ence of REs) have successfully been solved. However,
there still remain open issues and unsolved problems
to focus on. This text should serve as a good starting
point for readers searching for an existing solution to

their inference problem, as well as those searching for
an interesting and practical research topic.

References

(1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

XML-Xpress: High-Performance Schema-Specific
Compression for XML Data Formats. ICT — Intel-
ligent Compression Technologies, Inc., 2000.

H. Ahonen. Generating Grammars for Structured Doc-
uments Using Grammatical Inference Methods. Report
A-1996-4, Dept. of Computer Science, University of
Helsinki, 1996.

J. Berstel and L. Boasson. XML Grammars. In Math-
ematical Foundations of Computer Science, LNCS,
pages 182-191. Springer, 2000.

G. J. Bex, F. Neven, and J. V. den Bussche. DTDs ver-
sus XML Schema: a Practical Study. In WebDB’04,
pages 79-84, New York, NY, USA, 2004. ACM.

G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls.
Inference of Concise DTDs from XML Data. In
VLDB’06, pages 115-126. VLDB Endowment, 2006.
G. J. Bex, F. Neven, and S. Vansummeren. Infer-
ring XML Schema Definitions from XML Data. In
VLDB’07, pages 998-1009, Vienna, Austria, 2007.
ACM.

P. V. Biron and A. Malhotra. XML Schema Part 2:
Datatypes (Second Edition). W3C, 2004.

T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Eztensible Markup Language (XML)
1.0 (Fourth Edition). W3C, 2006.

B. Chidlovskii. Schema Extraction from XML Collec-
tions. In JCDL’02, pages 291-292, New York, NY,
USA, 2002. ACM.

J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0. W3C, November 1999.

J. Dvorakova and F. Zavoral. Schema-Based Analysis
of XSLT Streamability. In ADVCOMP’08, Valencia,
Spain, 2008. IEEE.

F. Fassetti and B. Fazzinga. FOX: Inference of Ap-
proximate Functional Dependencies from XML Data.
In DEXA’07, pages 10-14, Washington, DC, USA,
2007. IEEE.

H. Fernau. Learning XML Grammars. In MLDM’01,
pages 73-87, London, UK, 2001. Springer.

M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri,
and K. Shim. XTRACT: a System for Extracting
Document Type Descriptors from XML Documents.
In SIGMOD’00, pages 165-176, New York, NY, USA,
2000. ACM.

E. M. Gold. Language Identification in the Limit. In-
formation and Control, 10(5):447-474, 1967.

R. Goldman and J. Widom. DataGuides: Enabling
Query Formulation and Optimization in Semistruc-
tured Databases. In VLDB’97, pages 436-445, San
Francisco, CA, USA, 1997. Morgan Kaufmann.

J. Hegewald, F. Naumann, and M. Weis. XStruct:
Efficient Schema Extraction from Multiple and Large
XML Documents. In ICDE’06 Workshops, page 81,
Atlanta, GA, USA, 2006. IEEE.

18]

(19]

[20]

21]

22]

23]

24]

[25]

[26]

[27]

(28]

29]

[30]

(31]

32]

33]

34]

(35]

R. Jelliffe.
Validation Language using Patterns in Trees.
http://xml.ascc.net/resource/schematron/.
M. Mani. Keeping Chess Alive: Do We Need 1-
Unambiguous Content Models? talk given at Extreme
Markup Languages, Montreal, Canada, 2001.

M. Mesiti, R. Celle, M. A. Sorrenti, and G. Guer-
rini. X-Evolution: A System for XML Schema Evolu-
tion and Document Adaptation. In EDBT’06, LNCS,
pages 1143—-1146. Springer, 2006.

L. Mignet, D. Barbosa, and P. Veltri. The XML Web:
a First Study. In WIWWW’03, pages 500-510, New York,
NY, USA, 2003. ACM.

J.-K. Min, J.-Y. Ahn, and C.-W. Chung. Efficient ex-
traction of schemas for XML documents. Inf. Process.
Lett., 85(1):7-12, 2003.

I. Mlynkova. Similarity of XML Schema Definitions.
In DocEng’08, Sao Paulo, Brazil, 2008. ACM.

I. Mlynkova, K. Toman, and J. Pokorny. Statisti-
cal Analysis of Real XML Data Collections. In CO-
MAD’06, pages 20-31, New Delhi, India, 2006. Tata
McGraw-Hill.

C.-H. Moh, E.-P. Lim, and W.-K. Ng. Re-engineering
Structures from Web Documents. In DL’00, pages 67—
76, New York, NY, USA, 2000. ACM.

M. Murata. RELAX (Regular Language Description
for XML). 2002. http://www.xml.gr.jp/relax/.

M. Murata, D. Lee, and M. Mani. Taxonomy of XML
Schema Languages Using Formal Language Theory.
ACM Trans. Inter. Tech., 5(4):660-704, 2005.

K. Opocenska and M. Kopecky. Incox — a Lan-
guage for XML Integrity Constraints Description. In
DATESO’08, pages 1-12. CEUR-WS.org, 2008.

Y. Papakonstantinou and V. Vianu. DTD Inference
for Views of XML Data. In PODS’00, pages 35—46,
New York, NY, USA, 2000. ACM.

K. E. Shafer. Creating DTDs via the GB-Engine and
Fred. In SGML’95, page 399. Graphic Communica-
tions Association, 1995.

J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
Databases for Querying XML Documents: Limita-
tions and Opportunities. In VLDB’99, pages 302-314,
San Francisco, CA, USA, 1999. Morgan Kaufmann.
H. Shiu, J. Fong, and R. P. Biuk-Aghai. Reverse Engi-
neering XML Documents Into DTD Graph With SAX.
WSEAS Transactions on Computers, 5(6):1236-1241,
2006.

H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML Schema Part 1: Structures (Sec-
ond Edition). W3C, 2004.

O. Vosta, I. Mlynkova, and J. Pokorny. Even an Ant
Can Create an XSD. In DASFAA’08, LNCS, pages
35-50. Springer, 2008.

R. K. Wong and J. Sankey. On Structural Inference
for XML Data. Report UNSW-CSE-TR-0313, School
of Computer Science, The University of New South
Wales, 2003.

The Schematron — An XML Structure
2001.

